This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051022 #69 Feb 16 2025 08:32:41 %S A051022 0,1,2,3,4,5,6,7,8,9,100,101,102,103,104,105,106,107,108,109,200,201, %T A051022 202,203,204,205,206,207,208,209,300,301,302,303,304,305,306,307,308, %U A051022 309,400,401,402,403,404,405,406,407,408,409,500,501,502,503,504,505 %N A051022 Interpolate 0's between each pair of digits of n. %C A051022 These numbers have the same decimal and negadecimal representations. %C A051022 Or fixed points of decimal negadecimal conversion. - _Gerald Hillier_, Apr 23 2015 %H A051022 Reinhard Zumkeller, <a href="/A051022/b051022.txt">Table of n, a(n) for n = 0..10000</a> %H A051022 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Negadecimal.html">Negadecimal</a> %F A051022 Sums a_i*100^e_i with 0 <= a_i < 10. %F A051022 a(n) = n if n < 10, otherwise a(floor(n/10))*100 + n mod 10. - _Reinhard Zumkeller_, Apr 20 2011 [Corrected by _Kevin Ryde_, Nov 07 2020] %F A051022 a(n) = A338754(n)/11. - _Kritsada Moomuang_, Oct 20 2019 [Corrected by _Kevin Ryde_, Nov 07 2020] %e A051022 a(23) = 203. %e A051022 a(99) = 909. %e A051022 a(100) = 10000. %e A051022 a(101) = 10001. %e A051022 a(111) = 10101. %p A051022 M:= 3: # to get a(0) to a(10^M-1) %p A051022 A:= 0: %p A051022 for d from 1 to M do %p A051022 A:= seq(seq(a*100+b,b=0..9),a=A); %p A051022 od: %p A051022 A; # _Robert Israel_, Apr 23 2015 %t A051022 Table[FromDigits[Riffle[IntegerDigits[n],0]],{n,0,60}] (* _Harvey P. Dale_, Nov 17 2013 *) %t A051022 ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; %t A051022 k = 0; lst = {}; While[k < 1001, If[k == ToNegaBases[k, 10], AppendTo[ lst, k]]; k++]; lst (* _Robert G. Wilson v_, Jun 11 2014 *) %o A051022 (Haskell) %o A051022 a051022 n = if n < 10 then n else a051022 n' * 100 + r %o A051022 where (n', r) = divMod n 10 %o A051022 -- _Reinhard Zumkeller_, Apr 20 2011 %o A051022 (HP 49G calculator) %o A051022 « "" + SREV 0 9 %o A051022 FOR i i "" + DUP 0 + SREPL DROP %o A051022 NEXT SREV OBJ-> %o A051022 ». _Gerald Hillier_, Apr 23 2015 %o A051022 (PARI) a(n) = fromdigits(digits(n),100); \\ _Kevin Ryde_, Nov 07 2020 %o A051022 (Python) %o A051022 def a(n): return int("0".join(str(n))) %o A051022 print([a(n) for n in range(56)]) # _Michael S. Branicky_, Aug 15 2022 %Y A051022 Cf. A039723, A063010, A092908 (primes), A092909 (on primes), A338754 (*11). %Y A051022 In other bases: A000695, A037314, A276089. %K A051022 nonn,easy,base %O A051022 0,3 %A A051022 _Eric W. Weisstein_, Dec 11 1999 %E A051022 More terms and more precise definition from _Jorge Coveiro_, Apr 15 2004 and _David Wasserman_, Feb 26 2008 %E A051022 Edited by _N. J. A. Sloane_, Sep 14 2008 at the suggestion of _R. J. Mathar_ %E A051022 Offset fixed by _Reinhard Zumkeller_, Apr 20 2012