This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051028 #63 Feb 16 2025 08:32:41 %S A051028 1,135,11161,926271,76869289,6379224759,529398785665,43933719985479, %T A051028 3645969360009049,302571523160765631,25109790452983538281, %U A051028 2083810036074472911735,172931123203728268135681,14351199415873371782349831,1190976620394286129666900249 %N A051028 Ramanujan's a-series: expansion of (1+53x+9x^2)/(1-82x-82x^2+x^3). %C A051028 The "amazing" identity of Ramanujan is a(n)^3 + b(n)^3 = c(n)^3 + (-1)^n, where a(n)=A051028(n), b(n)=A051029(n) and c(n)=A051030(n). - _Emeric Deutsch_, Oct 14 2006 %H A051028 Robert Israel, <a href="/A051028/b051028.txt">Table of n, a(n) for n = 0..468</a> %H A051028 Kwang-Wu Chen, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-3/Kwang-WuChen.pdf">Extensions of an amazing identity of Ramanujan</a>, Fib. Q., 50 (2012), 227-230. %H A051028 Jung Hun Han and Michael D. Hirschhorn, <a href="http://www.jstor.org/stable/27642956">Another Look at an Amazing Identity of Ramanujan</a>, Mathematics Magazine, Vol. 79 (2006), pp. 302-304. %H A051028 Michael D. Hirschhorn, <a href="http://www.jstor.org/stable/2691416">An amazing identity of Ramanujan</a>, Math. Mag. 68 (1995), no. 3, 199--201. MR1335148 %H A051028 Michael D. Hirschhorn, <a href="http://www.jstor.org/stable/2690530">A Proof in the Spirit of Zeilberger of an Amazing Identity of Ramanujan</a>, Math. Mag., 69.4 (1996), 267-269. %H A051028 Michael D. Hirschhorn, <a href="http://www.austms.org.au/wp-content/uploads/Gazette/2004/Sep04/hirschhorn.pdf">Ramanujan and Fermat's Last Theorem</a>, The Australian Mathematical Society, Gazette, Volume 31 Number 4, September 2004. %H A051028 J. Mc Laughlin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/48-1/McLaughlin.pdf">An identity motivated by an amazing identity of Ramanujan</a>, Fib. Q., 48 (No. 1, 2010), 34-38. %H A051028 Eric Rowland and Jesus Sistos Barron, <a href="https://arxiv.org/abs/2501.14643">Complexity of powers of a constant-recursive sequence</a>, arXiv:2501.14643 [math.NT], 2025. See p. 2. %H A051028 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujansSumIdentity.html">Ramanujan's Sum Identity</a>. %H A051028 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (82,82,-1). %F A051028 G.f.: (1+53*x+9*x^2)/((1+x)*(1-83*x+x^2)). %F A051028 X(n+1) = A*X(n), where X(n) = transpose(A051028(n), A051029(n), A051030(n)) and A = matrix(3,3,[63,104,-68; 64,104,-67; 80,131,-85]). - _Emeric Deutsch_, Oct 14 2006 %p A051028 g:=(1+53*x+9*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g,x=0,20): seq(coeff(gser,x,n),n=0..12); # _Emeric Deutsch_, Oct 14 2006 %t A051028 CoefficientList[Series[(1 + 53 x + 9 x^2)/(1 - 82 x - 82 x^2 + x^3), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jul 22 2015 *) %o A051028 (PARI) Vec((1+53*x+9*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ _Michel Marcus_, Feb 29 2016 %Y A051028 Cf. A051029, A051030. %K A051028 nonn,easy %O A051028 0,2 %A A051028 _Eric W. Weisstein_ %E A051028 Minor edits (g.f. and name) by _M. F. Hasler_, May 08 2016