cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051029 Ramanujan's b-series: expansion of (2-26x-12x^2)/(1-82x-82x^2+x^3).

This page as a plain text file.
%I A051029 #55 Feb 16 2025 08:32:41
%S A051029 2,138,11468,951690,78978818,6554290188,543927106802,45139395574362,
%T A051029 3746025905565260,310875010766342202,25798879867700837522,
%U A051029 2140996154008403172108,177676881902829762447458,14745040201780861879966890,1223660659865908706274804428
%N A051029 Ramanujan's b-series: expansion of (2-26x-12x^2)/(1-82x-82x^2+x^3).
%C A051029 The "amazing" identity of Ramanujan is a(n)^3 + b(n)^3 = c(n)^3 + (-1)^n, where a(n) = A051028(n), b(n) = A051029(n) and c(n) = A051030(n). - _Emeric Deutsch_, Oct 14 2006
%D A051029 For additional references and links see A051028.
%H A051029 Robert Israel, <a href="/A051029/b051029.txt">Table of n, a(n) for n = 0..468</a>
%H A051029 Kwang-Wu Chen, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/50-3/Kwang-WuChen.pdf">Extensions of an amazing identity of Ramanujan</a>, Fib. Q., 50 (2012), 227-230.
%H A051029 Jung Hun Han and Michael D. Hirschhorn, <a href="http://www.jstor.org/stable/27642956">Another Look at an Amazing Identity of Ramanujan</a>, Mathematics Magazine, Vol. 79 (2006), pp. 302-304.
%H A051029 Michael D. Hirschhorn, <a href="http://www.jstor.org/stable/2691416">An amazing identity of Ramanujan</a>, Math. Mag. 68 (1995), no. 3, 199--201. MR1335148
%H A051029 Michael D. Hirschhorn, <a href="http://www.jstor.org/stable/2690530">A Proof in the Spirit of Zeilberger of an Amazing Identity of Ramanujan</a>, Math. Mag., 69.4 (1996), 267-269.
%H A051029 J. Mc Laughlin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/48-1/McLaughlin.pdf">An identity motivated by an amazing identity of Ramanujan</a>, Fib. Q., 48 (No. 1, 2010), 34-38.
%H A051029 Eric Rowland and Jesus Sistos Barron, <a href="https://arxiv.org/abs/2501.14643">Complexity of powers of a constant-recursive sequence</a>, arXiv:2501.14643 [math.NT], 2025. See p. 2.
%H A051029 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujansSumIdentity.html">Ramanujan's Sum Identity</a>.
%H A051029 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (82,82,-1).
%F A051029 G.f.: (2-26*x-12*x^2)/((1+x)*(1-83*x+x^2)).
%F A051029 X(n+1) = A*X(n), where X(n) = transpose(A051028(n), A051029(n), A051030(n)) and A = matrix(3,3,[63,104,-68; 64,104,-67; 80,131,-85]). - _Emeric Deutsch_, Oct 14 2006
%p A051029 g:=(2-26*x-12*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g,x=0,20): seq(coeff(gser,x,n),n=0..12); # _Emeric Deutsch_, Oct 14 2006
%t A051029 CoefficientList[Series[(2 - 26 x - 12 x^2)/(1 - 82 x - 82 x^2 + x^3), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jul 22 2015 *)
%o A051029 (PARI) Vec((2-26*x-12*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ _Michel Marcus_, Feb 29 2016
%Y A051029 Cf. A051028, A051030.
%K A051029 nonn,easy
%O A051029 0,1
%A A051029 _Eric W. Weisstein_
%E A051029 Minor edits (g.f. and name) by _M. F. Hasler_, May 08 2016