This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051041 #37 Feb 16 2025 08:32:41 %S A051041 1,4,12,36,96,264,696,1848,4848,12768,33480,87936,230520,604608, %T A051041 1585128,4156392,10895952,28566216,74887056,196322976,514662960, %U A051041 1349208600,3536962584,9272217936,24307198464,63721617888,167046745992,437914664688,1147996820376,3009483583056,7889385389784,20682088837608,54218261608896 %N A051041 Number of squarefree quaternary words of length n. %C A051041 a(n), n > 0, is a multiple of 4 by symmetry. - _Michael S. Branicky_, Jun 20 2022 %H A051041 A. M. Shur, <a href="http://dx.doi.org/10.1016/j.cosrev.2012.09.001">Growth properties of power-free languages</a>, Computer Science Review, Vol. 6 (2012), 187-208. %H A051041 A. M. Shur, <a href="http://arxiv.org/abs/1009.4415">Numerical values of the growth rates of power-free languages</a>, arXiv:1009.4415 [cs.FL], 2010. %H A051041 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquarefreeWord.html">Squarefree Word.</a> %F A051041 Let L be the limit lim a(n)^{1/n}, which exists because a(n) is a submultiplicative sequence. Then L=2.6215080... (Shur 2010). See (Shur 2012) for the methods of estimating such limits. - _Arseny Shur_, Apr 26 2015 %e A051041 There are 96 quaternary squarefree words of length 4: each of the words 0102, 0120, 0121, 0123 has 4!=24 images under the permutations of the set {0,1,2,3}. - _Arseny Shur_, Apr 26 2015 %e A051041 G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 96*x^4 + 264*x^5 + 696*x^6 + 1848*x^7 + .... %o A051041 (Python) %o A051041 def isf(s): # incrementally squarefree (check factors ending in last letter) %o A051041 for l in range(1, len(s)//2 + 1): %o A051041 if s[-2*l:-l] == s[-l:]: return False %o A051041 return True %o A051041 def aupton(nn, verbose=False): %o A051041 alst, sfs = [1], set("1") %o A051041 for n in range(1, nn+1): %o A051041 an = 4*len(sfs) %o A051041 sfsnew = set(s+i for s in sfs for i in "0123" if isf(s+i)) %o A051041 alst, sfs = alst+[an], sfsnew %o A051041 if verbose: print(n, an) %o A051041 return alst %o A051041 print(aupton(14)) # _Michael S. Branicky_, Jun 20 2022 %Y A051041 Cf. A006156. %Y A051041 Third column of A215075, multiplied by 24 (except for the first three terms). - _Arseny Shur_, Apr 26 2015 %K A051041 nonn %O A051041 0,2 %A A051041 _Eric W. Weisstein_ %E A051041 More terms from _David Wasserman_, Feb 27 2002 %E A051041 a(13)-a(15) from _John W. Layman_, Mar 03 2004 %E A051041 a(16)-a(25) from _Max Alekseyev_, Jul 03 2006 %E A051041 a(26)-a(30) from _Giovanni Resta_, Mar 20 2020