cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051053 a(n) = binomial(n, floor(n/6)).

This page as a plain text file.
%I A051053 #12 Mar 11 2018 21:33:08
%S A051053 1,1,1,1,1,1,6,7,8,9,10,11,66,78,91,105,120,136,816,969,1140,1330,
%T A051053 1540,1771,10626,12650,14950,17550,20475,23751,142506,169911,201376,
%U A051053 237336,278256,324632,1947792,2324784,2760681,3262623,3838380,4496388
%N A051053 a(n) = binomial(n, floor(n/6)).
%H A051053 Robert Israel, <a href="/A051053/b051053.txt">Table of n, a(n) for n = 0..5117</a>
%F A051053 From _Robert Israel_, Mar 11 2018: (Start)
%F A051053 Let n = 6*k+j, 0 <= j <= 5.
%F A051053 a(n+6)*(k+1)*Product_{m=1..5} (5*k+j+m) = a(n)*Product_{m=1..6} (6*k+j+m).
%F A051053 a(n) ~ sqrt(3/(5*Pi*k))*(6/5)^j*(6^6/5^5)^k as k -> infinity. (End)
%p A051053 seq(binomial(n, floor(n/6)), n=0..60); # _Robert Israel_, Mar 11 2018
%t A051053 Table[Binomial[n,Floor[n/6]],{n,0,50}] (* _Harvey P. Dale_, Dec 18 2013 *)
%Y A051053 Cf. A001405, A051033, A051036, A051052.
%K A051053 nonn
%O A051053 0,7
%A A051053 _N. J. A. Sloane_