This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051081 #18 Sep 08 2022 08:44:59 %S A051081 2,3,11,43,59,83,107,131,179,227,251,257,281,283,307,347,419,443,467, %T A051081 491,499,563,587,617,643,659,683,691,739,811,827,881,947,971,1019, %U A051081 1049,1051,1091,1097,1163,1187,1193,1217,1259,1283,1307,1427,1451,1459,1481 %N A051081 Primes p such that x^24 = -2 has a solution mod p. %C A051081 Complement of A216743 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012 %H A051081 Vincenzo Librandi, <a href="/A051081/b051081.txt">Table of n, a(n) for n = 1..1000</a> %p A051081 isA051081 := proc(p) local x; for x from 0 to p-1 do if (x^24 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051081(p) then printf("%d,",p) ; fi; od: # _R. J. Mathar_, Oct 15 2008 %t A051081 ok[p_]:= Reduce[Mod[x^24 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* _Vincenzo Librandi_, Sep 15 2012 *) %o A051081 (PARI) /* see A051071 */ %o A051081 (Magma) [p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^24 eq - 2}]; // _Vincenzo Librandi_, Sep 15 2012 %K A051081 nonn,easy %O A051081 1,1 %A A051081 _N. J. A. Sloane_ %E A051081 More terms from _R. J. Mathar_, Oct 15 2008