cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051082 Primes p such that x^26 = -2 has a solution mod p.

This page as a plain text file.
%I A051082 #15 Sep 08 2022 08:44:59
%S A051082 2,3,11,17,19,41,43,59,67,73,83,89,97,107,113,137,139,163,179,193,211,
%T A051082 227,233,241,251,257,281,283,307,331,337,347,353,379,401,409,419,433,
%U A051082 449,457,467,491,499,523,563,569,571,577,587,593,601,617,619,641,643,659,673,683,691,739,761,769,787,809,811,827,857,881,883,907,929,947,953,971,977,1009
%N A051082 Primes p such that x^26 = -2 has a solution mod p.
%C A051082 Complement of A216744 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012
%H A051082 Vincenzo Librandi, <a href="/A051082/b051082.txt">Table of n, a(n) for n = 1..1000</a>
%t A051082 ok[p_]:= Reduce[Mod[x^26 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* _Vincenzo Librandi_, Sep 15 2012 *)
%o A051082 (PARI) /* see A051071 */
%o A051082 (Magma) [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^26 eq - 2}]; // _Vincenzo Librandi_, Sep 15 2012
%K A051082 nonn,easy
%O A051082 1,1
%A A051082 _N. J. A. Sloane_
%E A051082 More terms from _Joerg Arndt_, Jul 27 2011