cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051088 Primes p such that x^38 = -2 has a solution mod p.

This page as a plain text file.
%I A051088 #16 Sep 08 2022 08:44:59
%S A051088 2,3,11,17,19,41,43,59,67,73,83,89,97,107,113,131,137,139,163,179,193,
%T A051088 211,227,233,241,251,257,281,283,307,313,331,337,347,353,379,401,409,
%U A051088 433,443,449,467,491,499,521,523,547,563,569,577,587,593,601,617,619,641,643,659,673,683,691,739,769,787,809,811,827,857,859,881,883,907,929,937,947,953,971,977,1009
%N A051088 Primes p such that x^38 = -2 has a solution mod p.
%C A051088 Complement of A216750 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012
%H A051088 Vincenzo Librandi, <a href="/A051088/b051088.txt">Table of n, a(n) for n = 1..1000</a>
%t A051088 ok[p_]:= Reduce[Mod[x^38 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* _Vincenzo Librandi_, Sep 15 2012 *)
%o A051088 (PARI) /* see A051071 */
%o A051088 (Magma) [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^38 eq - 2}]; // _Vincenzo Librandi_, Sep 15 2012
%K A051088 nonn,easy
%O A051088 1,1
%A A051088 _N. J. A. Sloane_
%E A051088 More terms from _Joerg Arndt_, Jul 27 2011