cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051099 Primes p such that x^60 = -2 has a solution mod p.

This page as a plain text file.
%I A051099 #18 Apr 12 2023 08:21:44
%S A051099 2,3,43,59,83,89,107,113,179,227,233,251,257,283,307,347,353,419,443,
%T A051099 467,499,563,587,593,617,643,659,683,739,827,947,971,1019,1049,1097,
%U A051099 1163,1187,1193,1217,1259,1283,1289,1307,1427,1433,1459,1499,1523,1553,1579
%N A051099 Primes p such that x^60 = -2 has a solution mod p.
%C A051099 Complement of A216775 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012
%H A051099 Vincenzo Librandi, <a href="/A051099/b051099.txt">Table of n, a(n) for n = 1..1000</a>
%t A051099 ok[p_]:= Reduce[Mod[x^60 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* _Vincenzo Librandi_, Sep 16 2012 *)
%o A051099 (PARI) /* see A051071 */
%o A051099 (Magma) [p: p in PrimesUpTo(1600) | exists(t){x : x in ResidueClassRing(p) | x^60 eq - 2}]; // _Vincenzo Librandi_, Sep 16 2012
%Y A051099 Cf. A000040, A216775.
%K A051099 nonn,easy
%O A051099 1,1
%A A051099 _N. J. A. Sloane_
%E A051099 More terms from _Joerg Arndt_, Jul 27 2011