This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051100 #18 Sep 08 2022 08:44:59 %S A051100 2,3,11,17,19,41,43,59,67,73,83,89,97,107,113,131,137,139,163,179,193, %T A051100 211,227,233,241,251,257,281,283,307,313,331,337,347,353,379,401,409, %U A051100 419,433,443,449,457,467,491,499,521,523,547,563,569,571,577,587,593,601,617,619,641,643,659,673,683,691,739,761,769,787,809,811,827,857,859,881,883,907,929,937,947,953,971,977,1009 %N A051100 Primes p such that x^62 = -2 has a solution mod p. %C A051100 Differs from A033203 first at the 109th entry, at p=1427. - _R. J. Mathar_, Oct 14 2008 %C A051100 Complement of A216776 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012 %H A051100 Vincenzo Librandi, <a href="/A051100/b051100.txt">Table of n, a(n) for n = 1..1000</a> %t A051100 ok[p_]:= Reduce[Mod[x^62 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* _Vincenzo Librandi_, Sep 16 2012 *) %o A051100 (PARI) /* see A051071 */ %o A051100 (Magma) [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^62 eq - 2}]; // _Vincenzo Librandi_, Sep 16 2012 %K A051100 nonn,easy %O A051100 1,1 %A A051100 _N. J. A. Sloane_ %E A051100 More terms from _Joerg Arndt_, Jul 27 2011