This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051127 #40 Jul 02 2025 16:01:58 %S A051127 0,0,1,0,0,1,0,1,2,1,0,0,0,2,1,0,1,1,3,2,1,0,0,2,0,3,2,1,0,1,0,1,4,3, %T A051127 2,1,0,0,1,2,0,4,3,2,1,0,1,2,3,1,5,4,3,2,1,0,0,0,0,2,0,5,4,3,2,1,0,1, %U A051127 1,1,3,1,6,5,4,3,2,1,0,0,2,2,4,2,0,6,5,4,3,2,1,0,1,0,3,0,3,1,7,6,5,4,3,2,1 %N A051127 Table T(n,k) = k mod n read by antidiagonals (n >= 1, k >= 1). %C A051127 Note that the upper right half of this sequence when formatted as a square array is essentially the same as this whole sequence when formatted as an upper right triangle. Sums of antidiagonals are A004125. - _Henry Bottomley_, Jun 22 2001 %H A051127 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %F A051127 As a linear array, the sequence is a(n) = A004736(n) mod A002260(n) or a(n) = ((t*t+3*t+4)/2-n) mod (n-(t*(t+1)/2)), where t = floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Dec 17 2012 %F A051127 G.f. for the n-th row: y*Sum_{i=0..n-2} (i + 1)*y^i/(1 - y^n). - _Stefano Spezia_, May 08 2024 %e A051127 0 0 0 0 0 0 0 0 0 0 ... %e A051127 1 0 1 0 1 0 1 0 1 0 ... %e A051127 1 2 0 1 2 0 1 2 0 1 ... %e A051127 1 2 3 0 1 2 3 0 1 2 ... %e A051127 1 2 3 4 0 1 2 3 4 0 ... %e A051127 1 2 3 4 5 0 1 2 3 4 ... %e A051127 1 2 3 4 5 6 0 1 2 3 ... %e A051127 1 2 3 4 5 6 7 0 1 2 ... %e A051127 1 2 3 4 5 6 7 8 0 1 ... %e A051127 1 2 3 4 5 6 7 8 9 0 ... %e A051127 1 2 3 4 5 6 7 8 9 10 ... %e A051127 1 2 3 4 5 6 7 8 9 10 ... %e A051127 1 2 3 4 5 6 7 8 9 10 ... %t A051127 T[n_, m_] = Mod[n - m + 1, m + 1]; Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] (* _Roger L. Bagula_, Sep 04 2008 *) %o A051127 (PARI) T(n, k)=k%n \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A051127 Transpose of A051126. %Y A051127 Cf. A048158, A051777, A122750. %Y A051127 Cf. A002260, A004125, A004736. %K A051127 nonn,tabl,easy,nice %O A051127 1,9 %A A051127 _N. J. A. Sloane_ %E A051127 More terms from _James Sellers_, Dec 11 1999