This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051137 #26 Aug 12 2024 01:27:48 %S A051137 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,6,10,10,5,1,1,8,21,20,15,6,1,1,13,39, %T A051137 55,35,21,7,1,1,18,92,136,120,56,28,8,1,1,30,198,430,377,231,84,36,9, %U A051137 1,1,46,498,1300,1505,888,406,120,45,10,1 %N A051137 Table T(n,k) read by antidiagonals: number of necklaces allowing turnovers (bracelets) with n beads of k colors. %C A051137 Unlike A075195 and A284855, antidiagonals go from bottom-left to top-right. %H A051137 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %F A051137 T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d divides n} phi(d) * k^(n/d). - _Robert A. Russell_, Sep 21 2018 %F A051137 G.f. for column k: (kx/4)*(kx+x+2)/(1-kx^2) - Sum_{d>0} phi(d)*log(1-kx^d)/2d. - _Robert A. Russell_, Sep 28 2018 %F A051137 T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i). (See A075195 formulas.) - _Richard L. Ollerton_, May 04 2021 %e A051137 Table begins with T[0,1]: %e A051137 1 1 1 1 1 1 1 1 1 1 %e A051137 1 2 3 4 5 6 7 8 9 10 %e A051137 1 3 6 10 15 21 28 36 45 55 %e A051137 1 4 10 20 35 56 84 120 165 220 %e A051137 1 6 21 55 120 231 406 666 1035 1540 %e A051137 1 8 39 136 377 888 1855 3536 6273 10504 %e A051137 1 13 92 430 1505 4291 10528 23052 46185 86185 %e A051137 1 18 198 1300 5895 20646 60028 151848 344925 719290 %e A051137 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 %e A051137 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 %e A051137 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022 %t A051137 b[n_, k_] := DivisorSum[n, EulerPhi[#]*k^(n/#) &] / n; %t A051137 c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)]; %t A051137 T[0, _] = 1; T[n_, k_] := (b[n, k] + c[n, k])/2; %t A051137 Table[T[n, k-n], {k, 1, 11}, {n, k-1, 0, -1}] // Flatten %t A051137 (* _Robert A. Russell_, Sep 21 2018 after _Jean-François Alcover_ *) %Y A051137 Columns 2-6 are A000029, A027671, A032275, A032276, and A056341. %Y A051137 Rows 2-7 are A000217, A000292, A002817, A060446, A027670, and A060532. %Y A051137 Cf. A000031. %Y A051137 Cf. A081720, A081721. %Y A051137 T(n,k) = (A075195(n,k) + A284855(n,k)) / 2. %K A051137 nice,nonn,tabl %O A051137 0,5 %A A051137 _Alford Arnold_