This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051151 #27 Jan 04 2025 16:34:58 %S A051151 1,-6,1,72,-18,1,-1296,396,-36,1,31104,-10800,1260,-60,1,-933120, %T A051151 355104,-48600,3060,-90,1,33592320,-13716864,2104704,-158760,6300, %U A051151 -126,1,-1410877440,609700608,-102114432,8772624,-423360,11592,-168 %N A051151 Generalized Stirling number triangle of first kind. %C A051151 a(n,m) = R_n^m(a=0, b=6) in the notation of the given 1961 and 1962 references. %C A051151 a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x-6*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference). %C A051151 This is the signed Stirling1 triangle A008275 with diagonal d >= 0 (main diagonal d = 0) scaled with 6^d. %H A051151 Wolfdieter Lang, <a href="/A051151/a051151.txt">First 10 rows</a>. %H A051151 D. S. Mitrinovic, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k762d/f996.image.r=1961%20mitrinovic">Sur une classe de nombres reliés aux nombres de Stirling</a>, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.] %H A051151 D. S. Mitrinovic and R. S. Mitrinovic, <a href="https://www.jstor.org/stable/43667130">Tableaux d'une classe de nombres reliés aux nombres de Stirling</a>, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.] %F A051151 a(n, m) = a(n-1, m-1) - 6*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1. %F A051151 E.g.f. for the m-th column of the signed triangle: ((log(1 + 6*x)/6)^m)/m!. %F A051151 a(n, m) = S1(n, m)*6^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle). %e A051151 Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins: %e A051151 1; %e A051151 -6, 1; %e A051151 72, -18, 1; %e A051151 -1296, 396, -36, 1; %e A051151 31104, -10800, 1260, -60, 1; %e A051151 -933120, 355104, -48600, 3060, -90, 1; %e A051151 ... %e A051151 3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3. %Y A051151 First (m=1) column sequence is: A047058(n-1). %Y A051151 Row sums (signed triangle): A008543(n-1)*(-1)^(n-1). %Y A051151 Row sums (unsigned triangle): A008542(n). %Y A051151 Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3), A051142 (b=4), A051150 (b=5). %K A051151 sign,easy,tabl %O A051151 1,2 %A A051151 _Wolfdieter Lang_ %E A051151 Various sections edited by _Petros Hadjicostas_, Jun 08 2020