This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051154 #40 Jul 07 2023 18:56:17 %S A051154 7,73,262657,18014398643699713, %T A051154 5846006549323611672814741748716771307882079584257 %N A051154 a(n) = 1 + 2^k + 4^k where k = 3^n. %C A051154 The first three terms are prime. Are there more? Golomb shows that k must be a power of 3 in order for 1 + 2^k + 4^k to be prime. - _T. D. Noe_, Jul 16 2008 %C A051154 The next term, a(5) has 147 digits and is too large to include in DATA. - _David A. Corneth_, Aug 19 2020 %H A051154 Jeppe Stig Nielsen, <a href="/A051154/b051154.txt">Table of n, a(n) for n = 0..6</a> %H A051154 Dario Alpern, <a href="https://www.alpertron.com.ar/MODFERM.HTM">Factors of Generalized Fermat Numbers</a> %H A051154 Walter Feit, <a href="https://doi.org/10.1090/S0002-9939-1990-1002157-4">Finite projective planes and a question about primes</a>, Proc. AMS, Vol. 108(1990), 561-564. %H A051154 Solomon W. Golomb, <a href="https://www.jstor.org/stable/2321679">Cyclotomic polynomials and factorization theorems</a>, Amer. Math. Monthly 85 (1978), 734-737. %F A051154 a(n) = (2^(3^(n+1))-1)/(2^(3^n)-1). %p A051154 F:= proc(n,r) local p; p := ithprime(r); (2^(p^(n+1))-1)/(2^(p^n)-1); end: %p A051154 [ seq(F(n,2), n=0..5) ]; %t A051154 Table[4^(3^n) + 2^(3^n) + 1, {n, 1, 5}] (* _Artur Jasinski_, Oct 31 2011 *) %o A051154 (PARI) a(n)=1+2^3^n+4^3^n \\ _Charles R Greathouse IV_, Oct 31 2011 %Y A051154 Cf. A001576, A051155, A051156, A051157. %K A051154 nonn,easy %O A051154 0,1 %A A051154 _N. J. A. Sloane_