This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051162 #89 Apr 24 2024 12:57:22 %S A051162 0,1,2,2,3,4,3,4,5,6,4,5,6,7,8,5,6,7,8,9,10,6,7,8,9,10,11,12,7,8,9,10, %T A051162 11,12,13,14,8,9,10,11,12,13,14,15,16,9,10,11,12,13,14,15,16,17,18,10, %U A051162 11,12,13,14,15,16,17,18,19,20 %N A051162 Triangle T(n,k) = n+k, n >= 0, 0 <= k <= n. %C A051162 Row sums are A045943 = triangular matchstick numbers: 3n(n+1)/2. This was independently noted by me and, without cross-reference, as a comment on A045943, by _Jon Perry_, Jan 15 2004. - _Jonathan Vos Post_, Nov 09 2007 %C A051162 In partitions of n into distinct parts having maximal size, a(n) is the greatest number, see A000009. - _Reinhard Zumkeller_, Jun 13 2009 %C A051162 Row sums of reciprocals of terms in this triangle converge to log(2). See link to Eric Naslund's answer. - _Mats Granvik_, Mar 07 2013 %C A051162 T(n,k) satisfies the cubic equation T(n,k)^3 + 3*A025581(n, k)*T(n,k) - 4*A105125(n,k) = 0. This is a problem similar to the one posed by François Viète (Vieta) mentioned in a comment on A025581. Here the problem is to determine for a rectangle (a, b), with a > b >= 1, from the given values for a^3 + b^3 and a - b the value of a + b. Here for nonnegative integers a = n and b = k. - _Wolfdieter Lang_, May 15 2015 %C A051162 If we subtract 1 from every term the result is essentially A213183. - _N. J. A. Sloane_, Apr 28 2020 %H A051162 Reinhard Zumkeller, <a href="/A051162/b051162.txt">Rows n=0..100 of triangle, flattened</a> %H A051162 Eric Naslund, <a href="http://math.stackexchange.com/questions/46713/euler-mascheroni-constant-expression-further-simplification/46718#46718">Euler-Mascheroni constant expression, further simplification</a> %H A051162 Dmitry A. Zaitsev, <a href="https://doi.org/10.1016/j.tcs.2016.11.002">A generalized neighborhood for cellular automata</a>, Theoretical Computer Science, 2016, Volume 666, 1 March 2017, Pages 21-35. %F A051162 T(n, k) = n + k, 0 <= k <= n. %F A051162 a(n-1) = 2*A002260(n) + A004736(n) - 3, n > 0. - _Boris Putievskiy_, Mar 12 2012 %F A051162 a(n-1) = (t - t^2+ 2n-2)/2, where t = floor((-1+sqrt(8*n-7))/2), n > 0. - _Robert G. Wilson v_ and _Boris Putievskiy_, Mar 14 2012 %F A051162 From _Robert Israel_, May 21 2015: (Start) %F A051162 a(n) = A003056(n) + A002262(n). %F A051162 G.f.: x/(1-x)^2 + (1-x)^(-1)*Sum(j>=1, (1-j)*x^A000217(j)). The sum is related to Jacobi Theta functions. (End) %F A051162 G.f. as triangle: (x + (2 - 3*x)*x*y)/((1 - x)^2*(1 - x*y)^2). - _Stefano Spezia_, Apr 22 2024 %e A051162 The triangle T(n, k) starts: %e A051162 n\k 0 1 2 3 4 5 6 7 8 9 10 ... %e A051162 0: 0 %e A051162 1: 1 2 %e A051162 2: 2 3 4 %e A051162 3: 3 4 5 6 %e A051162 4: 4 5 6 7 8 %e A051162 5: 5 6 7 8 9 10 %e A051162 6: 6 7 8 9 10 11 12 %e A051162 7: 7 8 9 10 11 12 13 14 %e A051162 8: 8 9 10 11 12 13 14 15 16 %e A051162 9: 9 10 11 12 13 14 15 16 17 18 %e A051162 10: 10 11 12 13 14 15 16 17 18 19 20 %e A051162 ... reformatted. - _Wolfdieter Lang_, May 15 2015 %p A051162 seq(seq(r+c, c=0..r),r=0..10); # _Robert Israel_, May 21 2015 %t A051162 With[{c=Range[0,20]}, Flatten[Table[Take[c,{n,2n-1}], {n,11}]]] (* _Harvey P. Dale_, Nov 19 2011 *) %o A051162 (Haskell) %o A051162 a051162 n k = a051162_tabl !! n !! k %o A051162 a051162_row n = a051162_tabl !! n %o A051162 a051162_tabl = iterate (\xs@(x:_) -> (x + 1) : map (+ 2) xs) [0] %o A051162 -- _Reinhard Zumkeller_, Sep 17 2014, Oct 02 2012, Apr 23 2012 %o A051162 (PARI) for(n=0,10,for(k=0,n,print1(n+k,", "))) \\ _Derek Orr_, May 19 2015 %Y A051162 Cf. A000009, A000217, A002260, A025581, A004736, A045943, A105125, A213183. %Y A051162 Cf. also A008585 (central terms), A005843 (right edge). %Y A051162 Cf. also A002262, A001477, A003056. %K A051162 nonn,tabl,easy,nice,look %O A051162 0,3 %A A051162 _N. J. A. Sloane_