A051175 Number of trees T of order n such that W(T) = W(L(L(T))) where W(G) and L(G) are the Wiener index and line graph of a graph G.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 7, 8, 22, 25, 66, 73, 204, 231, 513, 576, 1520, 1715, 3763, 4085
Offset: 1
Keywords
References
- A. A. Dobrynin (dobr(AT)math.nsc.ru), Distance of iterated line graphs, Graph Theory Notes of NY, 37 (1999), 8-9.
Links
- A. A. Dobrynin and L. S. Mel'nikov, Some results on the Wiener index of iterated line graphs, Electronic Notes in Discrete Mathematics 22 (2005), 469-475
- Index entries for sequences related to trees
Programs
-
Sage
# needs the package nauty def a(n): c = 0 for el in graphs.nauty_geng(str(n) + ' -c ' + str(n-1)+':' + str(n-1)): g = (el.line_graph()).line_graph() if el.wiener_index() == g.wiener_index(): c+=1 return c # Jernej Azarija, Aug 13 2012
Extensions
More terms (from Dobrynin/Mel'nikov reference), Jernej Azarija, Aug 13 2012