cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051200 Except for initial term, primes of form "n 3's followed by 1".

This page as a plain text file.
%I A051200 #56 Jul 02 2025 16:01:58
%S A051200 3,31,331,3331,33331,333331,3333331,33333331,333333333333333331,
%T A051200 3333333333333333333333333333333333333331,
%U A051200 33333333333333333333333333333333333333333333333331
%N A051200 Except for initial term, primes of form "n 3's followed by 1".
%C A051200 "A remarkable pattern that is entirely accidental and leads nowhere" - M. Gardner, referring to the first 8 terms.
%C A051200 a(2)*a(3)*a(4) = 34179391, a Zeisel number (A051015) with coefficients (10,21).
%C A051200 a(2)*a(3)*a(4)*a(5) = 1139233281421, a Zeisel number with coefficients (10,21).
%C A051200 a(2)*a(3)*..*a(6) = 379741768929343351, a Zeisel number with coefficients (10,21).
%C A051200 a(2)*a(3)*..*a(7) = 1265805010367017001532181, a Zeisel number with coefficients (10,21).
%C A051200 a(2)*a(3)*..*a(8) = 42193497392022209194699696424911, a Zeisel number with coefficients (10,21).
%C A051200 Besides first 3, primes of the form (10^n-7)/3, n>1. See A123568. - _Vincenzo Librandi_, Aug 06 2010
%C A051200 The integer lengths of the terms of the sequence are 1, 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, etc. - _Harvey P. Dale_, Dec 01 2018
%D A051200 Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 194.
%D A051200 W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb, Warsaw, 1964; Problem 88 [in English: 200 Problems from the Elementary Theory of Numbers]
%D A051200 W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, pp. 8, 56-57.
%D A051200 F. Smarandache, Properties of numbers, University of Craiova, 1973
%H A051200 R. K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
%H A051200 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/3.html">3.</a>
%F A051200 Union of 3 and A123568.
%t A051200 Join[{3},Select[Rest[FromDigits/@Table[PadLeft[{1},n,3], {n,50}]], PrimeQ]]  (* _Harvey P. Dale_, Apr 20 2011 *)
%Y A051200 Cf. A055520, A089017, A089018, A093671, A056698, A105427, A105428, A033175, A123568.
%K A051200 nonn,nice
%O A051200 1,1
%A A051200 _N. J. A. Sloane_
%E A051200 More terms from _James Sellers_
%E A051200 Cross reference added by _Harvey P. Dale_, May 21 2014