This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051301 #36 Oct 16 2021 19:46:08 %S A051301 2,2,3,7,5,11,7,71,61,19,11,39916801,13,83,23,59,17,661,19,71, %T A051301 20639383,43,23,47,811,401,1697,10888869450418352160768000001,29, %U A051301 14557,31,257,2281,67,67411,137,37,13763753091226345046315979581580902400000001 %N A051301 Smallest prime factor of n!+1. %C A051301 Theorem: For any N, there is a prime > N. Proof: Consider any prime factor of N! + 1. %C A051301 Cf. Wilson's Theorem (1770): p | (p-1)! + 1 if and only if p is a prime. %C A051301 If n is in A002981, then a(n) = n!+1. - _Chai Wah Wu_, Jul 15 2019 %D A051301 Albert H. Beiler, "Recreations in The Theory of Numbers, The Queen of Mathematics Entertains," Dover Publ. NY, 1966, Page 49. %D A051301 M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). %H A051301 Chai Wah Wu, <a href="/A051301/b051301.txt">Table of n, a(n) for n = 0..138</a> n = 0..100 derived from Hisanori Mishima's data by T. D. Noe. %H A051301 A. Borning, <a href="http://dx.doi.org/10.1090/S0025-5718-1972-0308018-5 ">Some results for k!+-1 and 2.3.5...p+-1</a>, Math. Comp., 26 (1972), 567-570. %H A051301 P. Erdős and C. L. Stewart, <a href="http://www.renyi.hu/~p_erdos/1976-27.pdf">On the greatest and least prime factors of n! + 1</a>, J. London Math. Soc. (2) 13:3 (1976), pp. 513-519. %H A051301 M. Kraitchik, <a href="/A002582/a002582.pdf">On the divisibility of factorials</a>, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy] %H A051301 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm">Factorizations of many number sequences</a> %H A051301 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha104.htm">Factorizations of many number sequences</a> %H A051301 R. G. Wilson v, <a href="/A038507/a038507.txt">Explicit factorizations</a> %F A051301 Erdős & Stewart show that a(n) > n + (l-o(l))log n/log log n except when n + 1 is prime, and that a(n) > n + e(n)sqrt(n) for almost all n where e(n) is any function with lim e(n) = 0. - _Charles R Greathouse IV_, Dec 05 2012 %F A051301 By Wilson's theorem, a(n) >= n + 1 with equality if and only if n + 1 is prime. - _Chai Wah Wu_, Jul 14 2019 %e A051301 a(3) = 7 because 3! + 1 = 7. %e A051301 a(4) = 5 because 4! + 1 = 25 = 5^2. (5! + 1 is also the square of a prime). %e A051301 a(6) = 7 because 6! + 1 = 721 = 7 * 103. %p A051301 with(numtheory): A051301 := n -> sort(convert(divisors(n!+1),list))[2]; # Corrected by _Peter Luschny_, Jul 17 2009 %t A051301 Do[ Print[ FactorInteger[ n! + 1, FactorComplete -> True ] [ [ 1, 1 ] ] ], {n, 0, 38} ] %t A051301 FactorInteger[#][[1,1]]&/@(Range[0,40]!+1) (* _Harvey P. Dale_, Oct 16 2021 *) %o A051301 (PARI) a(n)=factor(n!+1)[1,1] \\ _Charles R Greathouse IV_, Dec 05 2012 %Y A051301 Cf. A002583, A002981, A038507, A096225. %K A051301 nonn %O A051301 0,1 %A A051301 _Labos Elemer_