cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051326 Euclid-Mullin sequence (A000945) with initial value a(1)=79 instead of a(1)=2.

This page as a plain text file.
%I A051326 #35 Oct 08 2023 18:19:34
%S A051326 79,2,3,5,2371,7,39334891,19,29397438602292811,43,167,839,5839,
%T A051326 30402153456526009093473029504929376787635911,241815479790331,41,
%U A051326 180922657,5303,2389,13,31,11
%N A051326 Euclid-Mullin sequence (A000945) with initial value a(1)=79 instead of a(1)=2.
%C A051326 a(23) is a 122-digit prime.
%C A051326 a(5), a(7), a(9), a(14) and a(23) are all the product of the preceding terms + 1. - _Robert Price_, Jul 10 2015
%C A051326 a(32) requires factoring a composite 292 digit integer. - _Robert Price_, Sep 05 2021
%H A051326 Robert Price, <a href="/A051326/b051326.txt">Table of n, a(n) for n = 1..31</a> [corrected Sep 05, 2021]
%F A051326 a(n) = A020639(1 + Product_{k=1..n-1} a(k)), a(1) = 79.
%t A051326 a[1]=79; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
%o A051326 (PARI) spf(n)=my(f=factor(n)[1, 1]); f
%o A051326 first(m)=my(v=vector(m)); v[1]=79; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v \\ _Anders Hellström_, Dec 06 2015
%Y A051326 Cf. A000945, A000946, A005265, A005266, A020639.
%K A051326 nonn
%O A051326 1,1
%A A051326 _Labos Elemer_