This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051342 #23 Oct 08 2021 19:03:26 %S A051342 3,7,31,211,2311,59,19,347,317,331,200560490131,181,61,167,953,73,277, %T A051342 223,54730729297,1063,2521,22093,265739,131,2336993,960703,2297,149, %U A051342 334507,5122427,1543,1951,881,678279959005528882498681487,87549524399,23269086799180847 %N A051342 Smallest prime factor of 1 + (product of first n primes). %C A051342 Based on Euclid's proof that there are infinitely many primes. %H A051342 Amiram Eldar, <a href="/A051342/b051342.txt">Table of n, a(n) for n = 1..87</a> %H A051342 M. Kraitchik, <a href="/A002582/a002582.pdf">On the divisibility of factorials</a>, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy] %H A051342 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha102.htm">Factorizations of many number sequences</a> %H A051342 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm">Factorizations of many number sequences</a> %H A051342 R. G. Wilson v, <a href="/A038507/a038507.txt">Explicit factorizations</a> %F A051342 a(n) = A020639(1+A002110(n)). %p A051342 a:= proc(n) %p A051342 local N, F, i; %p A051342 N:= 1 + mul(ithprime(i),i=1..n); %p A051342 F:= select(type,map(t->t[1],ifactors(N,easy)[2]),integer); %p A051342 if nops(F) >= 1 then return min(F) fi; %p A051342 min(map(t->t[1],ifactors(N)[2])) %p A051342 end proc: %p A051342 seq(a(n),n=1..40); # _Robert Israel_, Oct 19 2014 %t A051342 Map[FactorInteger, %t A051342 Table[Product[Prime[n], {n, 1, m}] + 1, {m, 1, 36}]][[All, %t A051342 1]][[All, 1]] (* _Geoffrey Critzer_, Oct 19 2014 *) %t A051342 FactorInteger[#][[1,1]]&/@(FoldList[Times,Prime[Range[40]]]+1) (* _Harvey P. Dale_, Oct 08 2021 *) %o A051342 (PARI) a(n) = factor(1 + prod(i=1, n, prime(i)))[1, 1]; \\ _Michel Marcus_, Dec 10 2013 %Y A051342 Cf. A014545, A002585. %K A051342 nonn %O A051342 1,1 %A A051342 _Labos Elemer_ %E A051342 One more term from _Michel Marcus_, Dec 10 2013