cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051362 Primes remaining prime if any digit is deleted (zeros allowed).

This page as a plain text file.
%I A051362 #59 Feb 13 2024 06:57:19
%S A051362 23,37,53,73,113,131,137,173,179,197,311,317,431,617,719,1013,1031,
%T A051362 1097,1499,1997,2239,2293,3137,4019,4919,6173,7019,7433,9677,10193,
%U A051362 10613,11093,19973,23833,26833,30011,37019,40013,47933,73331,74177
%N A051362 Primes remaining prime if any digit is deleted (zeros allowed).
%C A051362 These might be called "super-prime numbers". - Jaime Gutierrez (jgutierrez(AT)matematicas.net), Sep 27 2007
%C A051362 A proper subset of A034895. - _Robert G. Wilson v_, Oct 12 2014
%C A051362 The largest known number in this sequence is a 274-digit prime consisting of 163 4s, followed by 80 0s, followed by 31 1s. See the CodeGolf link. - _Dmitry Kamenetsky_, Feb 26 2021
%H A051362 Giovanni Resta, <a href="/A051362/b051362.txt">Table of n, a(n) for n = 1..201</a> (terms < 10^13; first 100 terms from T. D. Noe)
%H A051362 CodeGolf StackExchange, <a href="https://codegolf.stackexchange.com/questions/10739/find-largest-prime-which-is-still-a-prime-after-digit-deletion">Find largest prime which is still a prime after digit deletion</a>, 2013.
%H A051362 Mathematics StackExchange, <a href="http://math.stackexchange.com/questions/33094">Deleting any digit yields a prime</a>, 2011.
%H A051362 Mathematics StackExchange, <a href="https://math.stackexchange.com/questions/4038896/largest-prime-that-remains-prime-when-any-one-of-its-digits-is-deleted">Largest prime that remains prime when any one of its digits is deleted</a>, 2021.
%t A051362 rpQ[n_]:=Module[{idn=IntegerDigits[n]},And@@PrimeQ[FromDigits/@ Subsets[ IntegerDigits[ n],{Length[idn]-1}]]]; Select[Prime[Range[40000]], rpQ]
%t A051362 prpQ[n_]:=AllTrue[FromDigits/@Table[Delete[IntegerDigits[n],d],{d,IntegerLength[ n]}],PrimeQ]; Select[Prime[Range[7500]],prpQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Nov 27 2020 *)
%o A051362 (Haskell)
%o A051362 import Data.List (inits, tails)
%o A051362 a051362 n = a051362_list !! (n-1)
%o A051362 a051362_list = filter p $ drop 4 a000040_list where
%o A051362    p x = all (== 1) $ map (a010051 . read) $
%o A051362              zipWith (++) (inits $ show x) (tail $ tails $ show x)
%o A051362 -- _Reinhard Zumkeller_, Dec 17 2011, Aug 24 2011
%o A051362 (PARI) is(n)=my(v=Vec(Str(n)),k);for(i=1, #v, k=eval(concat(vecextract(v, 2^#v-1-2^(i-1))));if(!isprime(k),return(0)));isprime(n) \\ _Charles R Greathouse IV_, Oct 05 2011
%o A051362 (Sage)
%o A051362 def is_A051362(n):
%o A051362     prime = is_prime(n)
%o A051362     if prime:
%o A051362         L = ZZ(n).digits(10)
%o A051362         for k in range(len(L)):
%o A051362             K = L[:]; del K[k]
%o A051362             prime = is_prime(ZZ(K, base=10))
%o A051362             if not prime: break
%o A051362     return prime
%o A051362 A051362_list = lambda n: filter(is_A051362, range(n))
%o A051362 A051362_list(77777) # _Peter Luschny_, Jul 17 2014
%o A051362 (Python)
%o A051362 from sympy import isprime
%o A051362 def ok(n):
%o A051362     if n < 10 or not isprime(n): return False
%o A051362     s = str(n)
%o A051362     return all(isprime(int(s[:i]+s[i+1:])) for i in range(len(s)))
%o A051362 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Nov 02 2023
%Y A051362 Cf. A034302, A010051, A000040, A034895.
%K A051362 nonn,base,nice
%O A051362 1,1
%A A051362 _Harvey P. Dale_, May 31 2000