This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051395 #28 Aug 14 2021 18:54:25 %S A051395 6,18,24,42,48,70,144,252,258,358,378,388,396,428,486,506,510,558,608, %T A051395 644,864,886,960,974,1022,1046,1326,1362,1392,1398,1422,1434,1442, %U A051395 1468,1476,1592,1604,1676,1820,1950,2016,2068,2140,2288,2430,2460 %N A051395 Numbers whose square is a sum of 4 consecutive primes. %C A051395 First of four consecutive primes in A206280. %H A051395 Charles R Greathouse IV and Zak Seidov, <a href="/A051395/b051395.txt">Table of n, a(n) for n = 1..10783 (First 3400 terms from Charles R Greathouse IV)</a> %F A051395 Numbers m such that m^2 = Sum_{i=k..k+3} prime(i) for some k. %e A051395 6 is a term because 6*6 = 5 + 7 + 11 + 13; %e A051395 18 is a term because 18*18 = 324 = 73 + 79 + 83 + 89. %o A051395 (PARI) lista(nn) = {pr = primes(nn); for (i = 1, nn - 3, s = pr[i] + pr[i+1] + pr[i+2] + pr[i+3]; if (issquare(s), print1(sqrtint(s), ", ")););} \\ _Michel Marcus_, Oct 02 2013 %o A051395 (PARI) is(n)=n*=n; my(p=precprime(n\4),q=nextprime(n\4+1),r,s); if(n < 3*q+p+8, r=precprime(p-1); s=n-p-q-r; ispseudoprime(s) && (s == precprime(r-1) || s == nextprime(q+1)), r=nextprime(q+1); s=n-p-q-r; ispseudoprime(s) && (s == precprime(p-1) || s == nextprime(r+1))) \\ _Charles R Greathouse IV_, Oct 02 2013 %Y A051395 Cf. A072849, A206280. %K A051395 easy,nonn %O A051395 1,1 %A A051395 _Zak Seidov_, Jun 21 2003 %E A051395 Corrected and extended by _Don Reble_, Nov 20 2006