cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051427 Number of strictly Deza graphs with n nodes.

This page as a plain text file.
%I A051427 #24 May 07 2022 09:00:24
%S A051427 0,0,0,0,0,0,0,3,2,1,0,6,1,1,1
%N A051427 Number of strictly Deza graphs with n nodes.
%C A051427 From the Erikson et al. paper: We consider the following generalization of strongly regular graphs. A graph G is a Deza graph if it is regular and the number of common neighbors of two distinct vertices takes on one of two values (not necessarily depending on the adjacency of the two vertices). - _Jonathan Vos Post_, Jul 06 2008
%H A051427 M. Erickson, S. Fernando, W. H. Haemers, D. Hardy and J. Hemmeter, <a href="https://doi.org/10.1002/(SICI)1520-6610(1999)7:6%3C395::AID-JCD1%3E3.0.CO;2-U">Deza graphs: A generalization of strongly regular graph</a>, J. Combinatorial Designs, Vol 7, Issue 6, 395-405, Oct 21, 1999. See also <a href="https://www.researchgate.net/publication/229887099_Deza_graphs_A_generalization_of_strongly_regular_graph">here</a>.
%H A051427 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a051/A051427.java">Java program</a> (github)
%Y A051427 Cf. A005176, A076434, A076435, A088741.
%K A051427 nonn,nice,hard,more
%O A051427 1,8
%A A051427 _N. J. A. Sloane_
%E A051427 a(14)-a(15) from _Sean A. Irvine_, Sep 18 2021