This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051449 #24 Jul 02 2025 16:01:58 %S A051449 1,1,1,2,3,4,7,10,16,25,40,62,101,159,257,410,663,1062,1719,2764,4472, %T A051449 7209,11664,18828,30465,49221,79641,128746,208315,336872,545071, %U A051449 881638,1426520,2307665,3733880,6040746,9774133,15813587,25586921,41398418 %N A051449 Number of fibered rational knots with n crossings. %H A051449 Harvey P. Dale, <a href="/A051449/b051449.txt">Table of n, a(n) for n = 3..1000</a> %H A051449 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,2,1,-2,-2,-2,-1). %F A051449 G.f.: (x^2/2)*((-x-x^2)/(x^4+2x^3+x^2-1) + (-x-x^2)/(x^4+x^2-1)). %F A051449 G.f.: -x^3*(x^3+x-1)*(1+x)^2 / ( (1+x+x^2)*(x^2+x-1)*(x^4+x^2-1) ). %e A051449 a(7)=3 because there are 3 fibered rational knots with 7 crossings: 7_1, 7_6 and 7_7 (in Alexander-Briggs notation). %t A051449 f[x_] = -(x+1)^2*(x^3+x-1) / ((x^2+x-1)*(x^2+x+1)*(x^4+x^2-1)); CoefficientList[ Series[f[x], {x, 0, 39}], x]; Table[a[n], {n, 0, 20}](* _Jean-François Alcover_, Nov 21 2011 *) %t A051449 LinearRecurrence[{0,2,2,1,-2,-2,-2,-1},{1,1,1,2,3,4,7,10},40] (* _Harvey P. Dale_, Dec 27 2015 *) %K A051449 easy,nonn,nice %O A051449 3,4 %A A051449 Alexander Stoimenow (stoimeno(AT)math.toronto.edu) %E A051449 More terms from _James Sellers_