This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051452 #31 Aug 15 2024 08:18:43 %S A051452 2,3,7,13,61,421,841,2521,27721,360361,720721,12252241,232792561, %T A051452 5354228881,26771144401,80313433201,2329089562801,72201776446801, %U A051452 144403552893601,5342931457063201,219060189739591201 %N A051452 a(n) = 1 + lcm(1..k) where k is the n-th prime power A000961(n). %C A051452 From _Daniel Forgues_, Apr 27 2014: (Start) %C A051452 Factorizations: %C A051452 2, 3, 7, 13, 61, 421 are primes; %C A051452 841 = 29^2; %C A051452 2521 is prime; %C A051452 27721 = 19*1459, 360361 = 89*4049, 720721 = 71*10151, %C A051452 12252241 = 1693*7237; %C A051452 232792561 is prime; %C A051452 5354228881 = 6659*804059; %C A051452 26771144401 is prime; %C A051452 80313433201 = 331*11239*21589, 2329089562801 = 101*271*2311*36821; %C A051452 72201776446801 is prime. %C A051452 Very likely contains an infinite number of primes (see A049536). (End) %o A051452 (PARI) print1(2);t=1;for(n=2,100,if(t%n, t=lcm(t,n); print1(", "t+1))) \\ _Charles R Greathouse IV_, Jan 04 2013 %o A051452 (Python) %o A051452 from math import prod %o A051452 from sympy import primepi, integer_nthroot, integer_log, primerange %o A051452 def A051452(n): %o A051452 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) %o A051452 m, k = n, f(n) %o A051452 while m != k: %o A051452 m, k = k, f(k) %o A051452 return 1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # _Chai Wah Wu_, Aug 15 2024 %Y A051452 1 + A003418(A000961(n)), corresponds to distinct values of 1 + A003418. %Y A051452 Cf. A049536, A049537, A051454, A208768. %K A051452 nonn %O A051452 1,1 %A A051452 _Labos Elemer_