This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051472 #14 Jul 02 2025 16:01:58 %S A051472 3,3,6,4,4,19,5,18,18,5,23,65,23,6,6,102,189,231,189,102,7,41,291,420, %T A051472 420,291,41,7,48,711,840,711,48,8,605,1551,1551,605,8,281,3102,281,9, %U A051472 72,2574,4433,4433,2574,72,9,81,1456,7007,11583,7007,1456,81,10,10,588 %N A051472 a(n) = A028317(n)/2. %H A051472 G. C. Greubel, <a href="/A051472/b051472.txt">Table of n, a(n) for n = 0..1000</a> %e A051472 Even elements of (1/2)*A028317 as an irregular triangle: %e A051472 3, 3; %e A051472 6; %e A051472 4, 4; %e A051472 19; %e A051472 5, 18, 18, 5; %e A051472 23, 65, 23; %e A051472 6, 6; %e A051472 ... %t A051472 A028313[n_, k_]:= If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]]; %t A051472 f= Table[A028313[n,k], {n,0,100}, {k,0,n}]//Flatten; %t A051472 b[n_]:= DeleteCases[{f[[n+1]]}, _?OddQ]/2; %t A051472 Table[b[n], {n,0,200}]//Flatten (* _G. C. Greubel_, Jan 06 2024 *) %o A051472 (Magma) %o A051472 A028313:= func< n, k | n le 1 select 1 else Binomial(n, k) +3*Binomial(n-2, k-1) >; %o A051472 a:=[A028313(n, k): k in [0..n], n in [0..100]]; %o A051472 [a[n]/2: n in [1..200] | (a[n] mod 2) eq 0]; // _G. C. Greubel_, Jan 06 2024 %o A051472 (SageMath) %o A051472 def A028313(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1) %o A051472 a=flatten([[A028313(n, k) for k in range(n+1)] for n in range(101)]) %o A051472 [a[n]/2 for n in (0..200) if a[n]%2==0] # _G. C. Greubel_, Jan 06 2024 %Y A051472 Cf. A028313, A028317. %K A051472 nonn,tabf %O A051472 0,1 %A A051472 _James Sellers_