This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051473 #9 Jul 02 2025 16:01:58 %S A051473 3,4,18,5,23,6,189,102,420,291,41,7,711,48,1551,605,8,281,4433,2574, %T A051473 72,9,7007,1456,81,10,39039,27924,15834,7014,2370,588,82654,66963, %U A051473 43758,22848,9384,2958,111,11,149617,110721,66606,32232,12342,122,314925 %N A051473 a(n) = A028321(n)/2. %H A051473 G. C. Greubel, <a href="/A051473/b051473.txt">Table of n, a(n) for n = 0..1000</a> %t A051473 b:= Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k, Floor[n/2]+1,n}]//Flatten; %t A051473 Select[b, EvenQ]/2 (* _G. C. Greubel_, Jul 02 2024 *) %o A051473 (Magma) %o A051473 T:= func< n, k | n le 1 select 1 else Binomial(n, k) + 3*Binomial(n-2, k-1) >; // T = A028323 %o A051473 b:=[T(n, k): k in [1+Floor(n/2)..n], n in [0..100]]; %o A051473 [b[n]/2: n in [1..150] | (b[n] mod 2) eq 0]; // _G. C. Greubel_, Jul 02 2024 %o A051473 (SageMath) %o A051473 def A028323(n, k): return binomial(n, k) + 3*binomial(n-2, k-1) - 3*int(n==0) %o A051473 b=flatten([[A028323(n, k) for k in range(1+(n//2),n+1)] for n in range(101)]) %o A051473 [b[n]/2 for n in (1..150) if b[n]%2==0] # _G. C. Greubel_, Jul 02 2024 %Y A051473 Cf. A028313, A028314, A028315, A028316, A028317, A028318, A028319. %Y A051473 Cf. A028320, A028321, A028322, A028323, A028324, A028325, A051472. %K A051473 nonn %O A051473 0,1 %A A051473 _James Sellers_