This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051491 #46 Feb 17 2025 12:57:24 %S A051491 2,9,5,5,7,6,5,2,8,5,6,5,1,9,9,4,9,7,4,7,1,4,8,1,7,5,2,4,1,2,3,1,9,4, %T A051491 5,8,8,3,7,5,4,9,2,3,0,4,6,6,3,5,9,6,5,9,5,3,5,0,4,7,2,4,7,8,9,0,5,9, %U A051491 6,4,7,3,3,1,3,9,5,7,4,9,5,1,0,8,6,6,6,8,2,8,3,6,7,6,5,8,1,3,5,2,5,3 %N A051491 Decimal expansion of Otter's rooted tree constant: lim_{n->inf} A000081(n+1)/A000081(n). %C A051491 A000055(n) ~ A086308 * A051491^n * n^(-5/2), A000081(n) ~ A187770 * A051491^n * n^(-3/2). - _Vaclav Kotesovec_, Jan 04 2013 %C A051491 Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 481) has a wrong value of this constant (2.9955765856). - _Vaclav Kotesovec_, Jan 04 2013 %D A051491 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316. %H A051491 David Broadhurst, <a href="https://vimeo.com/1054325156?share=copy">Resurgent Integer Sequences</a>, Rutgers Experimental Math Seminar, Feb 06 2025; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/broadhurst2025.pdf">Slides</a>. %H A051491 Amirmohammad Farzaneh, Mihai-Alin Badiu, and Justin P. Coon, <a href="https://arxiv.org/abs/2309.09779">On Random Tree Structures, Their Entropy, and Compression</a>, arXiv:2309.09779 [cs.IT], 2023. %H A051491 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/otter/otter.html">Otter's Tree Enumeration Constants</a> [Broken link] %H A051491 S. R. Finch, <a href="http://web.archive.org/web/20010207195939/http://www.mathsoft.com/asolve/constant/otter/otter.html">Otter's Tree Enumeration Constants</a> [Wayback Machine] %H A051491 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009, p. 481 %H A051491 Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/treegrowth.txt">Tree-growth constant to 1800 digits</a> %H A051491 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RootedTree.html">Rooted Tree</a> %H A051491 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Tree.html">Tree</a> %H A051491 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %H A051491 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %e A051491 2.95576528565199497471481752412319458837549230466359659535... %t A051491 digits = 99; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1+Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; RealDigits[alpha, 10, digits] // First (* _Jean-François Alcover_, Sep 24 2014 *) %Y A051491 Cf. A000081, A051492, A187770, A000055, A086308, A215978, A274082. %K A051491 nonn,nice,cons %O A051491 1,1 %A A051491 _David Broadhurst_