This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051493 #18 Oct 05 2021 22:12:15 %S A051493 0,0,1,0,1,0,2,1,2,1,4,2,5,2,5,4,8,4,10,6,9,6,14,8,15,9,16,12,21,11, %T A051493 24,16,22,16,27,18,33,20,31,24,40,23,44,30,39,30,52,32,54,35,52,42,65, %U A051493 38,65,48,64,49,80,48,85,56,77,64,90,58,102,72,93,69,114,72,120,81 %N A051493 Triangles with perimeter n and relatively prime integer side lengths. %C A051493 From _Peter Munn_, Jul 26 2017: (Start) %C A051493 The triangles that meet the conditions are listed by nondecreasing n in A070110. %C A051493 Without the requirement for relatively prime side lengths, this sequence becomes A005044. %C A051493 Counting the triangles by longest side instead of perimeter, this sequence becomes A123323. %C A051493 a(n) = A070094(n) + A070102(n) + A070109(n). %C A051493 (End) %H A051493 Michael De Vlieger, <a href="/A051493/b051493.txt">Table of n, a(n) for n = 1..10000</a> %H A051493 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A051493 Moebius transform of A005044. %e A051493 There are 3 triangles with integer-length sides and perimeter 9: 1-4-4, 2-3-4, 3-3-3. 3-3-3 is omitted because isomorphic to 1-1-1, so a(9)=2. %t A051493 nmax = 100; %t A051493 A005044[n_] := Quotient[n^2 + 6n Mod[n, 2] + 24, 48]; %t A051493 A = Array[A005044, nmax]; %t A051493 mob[m_, n_] := If[ Mod[m, n] == 0, MoebiusMu[m/n], 0]; %t A051493 Reap[Do[Sow[Sum[mob[n, d] A[[d]], {d, 1, n}]], {n, 1, nmax}]][[2, 1]] (* _Jean-François Alcover_, Oct 05 2021 *) %Y A051493 Cf. A005044, A057887, A070110, A123323. %Y A051493 Equivalent sequences, restricted to subsets: A070091 (isosceles), A070094 (acute), A070102 (obtuse), A070109 (right-angled), A070138 (with integer area), A070202 (with integer inradius). %K A051493 nonn %O A051493 1,7 %A A051493 _Neil Fernandez_ %E A051493 Corrected and extended with formula by _Christian G. Bower_, Nov 15 1999 %E A051493 Formula updated due to change to referenced sequence, and definition clarified by _Peter Munn_, Jul 26 2017