This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051538 #24 Jul 02 2025 16:01:58 %S A051538 1,5,70,210,2310,30030,60060,1021020,19399380,19399380,446185740, %T A051538 2230928700,6692786100,194090796900,12033629407800,12033629407800, %U A051538 12033629407800,445244288088600,445244288088600,18255015811632600 %N A051538 Least common multiple of {b(1),...,b(n)}, where b(k) = k(k+1)(2k+1)/6 = A000330(k). %C A051538 Also a(n) = lcm(1,...,(2n+2))/12. - _Paul Barry_, Jun 09 2006. Proof that this is the same sequence, from _Martin Fuller_, May 06 2007: k, k+1, 2k+1 are coprime so their lcm is the same as their product. Hence a(n) = lcm{k, k+1, 2k+1 | k=1..n}/6. {k, k+1, 2k+1 | k=1..n} = {1..2n+2 excluding even numbers >n+1}. Adding the higher even numbers to the set doubles the LCM. Hence lcm{k, k+1, 2k+1 | k=1..n}/6 = lcm{1..2n+2}/12. %H A051538 Reinhard Zumkeller, <a href="/A051538/b051538.txt">Table of n, a(n) for n = 1..1000</a> %e A051538 a(4) = lcm(1, 5, 14, 30) = 210. %t A051538 Table[LCM@@Range[2n+2]/12,{n,30}] (* _Harvey P. Dale_, Apr 25 2011 *) %o A051538 (Haskell) %o A051538 a051538 n = a051538_list !! (n-1) %o A051538 a051538_list = scanl1 lcm $ tail a000330_list %o A051538 -- _Reinhard Zumkeller_, Mar 12 2014 %o A051538 (Magma) [Lcm([1..2*n+2])/12: n in [1..30]]; // _G. C. Greubel_, May 03 2023 %o A051538 (SageMath) %o A051538 def A051538(n): %o A051538 return lcm(range(1,2*n+3))/12 %o A051538 [A051538(n) for n in range(1,31)] # _G. C. Greubel_, May 03 2023 %Y A051538 Second column of A120101. %Y A051538 Cf. A000330. %Y A051538 Cf. A051542 (LCM), A025555. %K A051538 easy,nice,nonn %O A051538 1,2 %A A051538 _Asher Auel_ %E A051538 Corrected by _James Sellers_ %E A051538 Edited by _N. J. A. Sloane_, May 06 2007