This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051561 #13 Jul 07 2015 21:28:32 %S A051561 0,0,1,27,539,9850,176554,3197348,59354028,1137868848,22614500016, %T A051561 466814750688,10015620672672,223359393479040,5175622796192640, %U A051561 124533006364442880,3109120944743427840,80473740053567016960 %N A051561 Third unsigned column of triangle A051379. %C A051561 From _Johannes W. Meijer_, Oct 20 2009: (Start) %C A051561 The asymptotic expansion of the higher order exponential integral E(x,m=3,n=8) ~ exp(-x)/x^3*(1 - 27/x + 539/x^2 - 9850/x^3 + 176554/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information. %C A051561 (End) %D A051561 Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379. %F A051561 a(n) = A051379(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^8). %F A051561 If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,8)|, for n>=1. - _Milan Janjic_, Dec 21 2008 %t A051561 With[{nn=20},CoefficientList[Series[(Log[1-x])^2/(2(1-x)^8),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jul 10 2013 *) %Y A051561 Cf. A049388 (m=0), A051560 (m=1) unsigned columns. %K A051561 easy,nonn %O A051561 0,4 %A A051561 _Wolfdieter Lang_