cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051565 Third unsigned column of triangle A051523.

This page as a plain text file.
%I A051565 #11 Jul 07 2015 21:31:06
%S A051565 0,0,1,33,791,17100,358024,7491484,159168428,3463513704,77559615576,
%T A051565 1792139785920,42789106278720,1056302350122240,26964471256888320,
%U A051565 711643650545422080,19410244660543737600,546854985563699289600
%N A051565 Third unsigned column of triangle A051523.
%C A051565 From _Johannes W. Meijer_, Oct 20 2009: (Start)
%C A051565 The asymptotic expansion of the higher order exponential integral E(x,m=3,n=10) ~ exp(-x)/x^3*(1 - 33/x + 791/x^2 - 17100/x^3 + 358024/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
%C A051565 (End)
%D A051565 Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.
%F A051565 a(n) = A051523(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^10).
%F A051565 If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,10)|, for n>=1. - _Milan Janjic_, Dec 21 2008
%Y A051565 Cf. A049398 (m=0), A051564 (m=1) unsigned columns.
%K A051565 easy,nonn
%O A051565 0,4
%A A051565 _Wolfdieter Lang_