cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051587 Number of 4 X n binary matrices such that any 2 rows have a common 1.

This page as a plain text file.
%I A051587 #22 Sep 08 2022 08:44:59
%S A051587 0,1,31,781,17887,380821,7635991,145858861,2680379887,47772681541,
%T A051587 831224886151,14192847754141,238791235611487,3971678627940661,
%U A051587 65470546978625911,1071778956904132621,17451563620410100687
%N A051587 Number of 4 X n binary matrices such that any 2 rows have a common 1.
%H A051587 G. C. Greubel, <a href="/A051587/b051587.txt">Table of n, a(n) for n = 0..825</a>
%H A051587 V. Jovovic, G. Kilibarda, <a href="http://dx.doi.org/10.4213/dm398">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
%H A051587 V. Jovovic, G. Kilibarda, <a href="http://dx.doi.org/10.1515/dma.1999.9.6.593">On the number of Boolean functions in the Post classes F^{mu}_8</a>, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
%H A051587 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (73,-2287,40195,-433744,2944132,-12279888,28782720,-29030400).
%F A051587 a(n) = 16^n -6*12^n +12*10^n -9^n -16*8^n +15*7^n -6*6^n +5^n.
%F A051587 G.f.: x*(167040*x^6-146736*x^5+48916*x^4-8424*x^3+805*x^2-42*x+1)/((5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)*(12*x-1)*(16*x-1)). - _Colin Barker_, Nov 05 2012
%F A051587 E.g.f.: exp(16*x) -6*exp(12*x) +12*exp(10*x) -exp(9*x) -16*exp(8*x) +15*exp(7*x) -6*exp(6*x) +exp(5*x). - _G. C. Greubel_, Nov 12 2019
%p A051587 seq(16^n -6*12^n +12*10^n -9^n -16*8^n +15*7^n -6*6^n +5^n, n=0..20); # _G. C. Greubel_, Nov 12 2019
%t A051587 Table[16^n -6*12^n +12*10^n -9^n -16*8^n +15*7^n -6*6^n +5^n, {n, 0, 20}] (* _G. C. Greubel_, Oct 06 2017 *)
%o A051587 (PARI) vector(21, n, m=n-1; 16^m -6*12^m +12*10^m -9^m -16*8^m +15*7^m -6*6^m +5^m) \\ _G. C. Greubel_, Oct 06 2017
%o A051587 (Magma) [16^n -6*12^n +12*10^n -9^n -16*8^n +15*7^n -6*6^n +5^n: n in [0..20]]; // _G. C. Greubel_, Oct 06 2017
%o A051587 (Sage) [16^n -6*12^n +12*10^n -9^n -16*8^n +15*7^n -6*6^n +5^n for n in (0..20)] # _G. C. Greubel_, Nov 12 2019
%o A051587 (GAP) List([0..20], n-> 16^n -6*12^n +12*10^n -9^n -16*8^n +15*7^n -6*6^n +5^n); # _G. C. Greubel_, Nov 12 2019
%K A051587 nonn,easy
%O A051587 0,3
%A A051587 _Vladeta Jovovic_, Goran Kilibarda