cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051601 Rows of triangle formed using Pascal's rule except we begin and end the n-th row with n.

This page as a plain text file.
%I A051601 #52 Oct 27 2023 22:00:44
%S A051601 0,1,1,2,2,2,3,4,4,3,4,7,8,7,4,5,11,15,15,11,5,6,16,26,30,26,16,6,7,
%T A051601 22,42,56,56,42,22,7,8,29,64,98,112,98,64,29,8,9,37,93,162,210,210,
%U A051601 162,93,37,9,10,46,130,255,372,420,372,255,130,46,10
%N A051601 Rows of triangle formed using Pascal's rule except we begin and end the n-th row with n.
%C A051601 The number of spotlight tilings of an m X n rectangle missing the southeast corner. E.g., there are 2 spotlight tilings of a 2 X 2 square missing its southeast corner. - _Bridget Tenner_, Nov 10 2007
%C A051601 T(n,k) = A134636(n,k) - A051597(n,k). - _Reinhard Zumkeller_, Nov 23 2012
%C A051601 For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - _Boris Putievskiy_, Aug 18 2013
%C A051601 For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013
%H A051601 Reinhard Zumkeller, <a href="/A051601/b051601.txt">Rows n = 0..120 of triangle, flattened</a>
%H A051601 B. E. Tenner, <a href="http://dx.doi.org/10.1007/s00026-011-0077-6">Spotlight tiling</a>, Ann. Combinat. 14 (4) (2010) 553-568.
%H A051601 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A051601 T(m,n) = binomial(m+n,m) - 2*binomial(m+n-2,m-1), up to offset and transformation of array to triangular indices. - _Bridget Tenner_, Nov 10 2007
%F A051601 T(n,k) = binomial(n, k+1) + binomial(n, n-k+1). - _Roger L. Bagula_, Feb 17 2009
%F A051601 T(0,n) = T(n,0) = n, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.
%e A051601 From _Roger L. Bagula_, Feb 17 2009: (Start)
%e A051601 Triangle begins:
%e A051601    0;
%e A051601    1,  1;
%e A051601    2,  2,   2;
%e A051601    3,  4,   4,   3;
%e A051601    4,  7,   8,   7,    4;
%e A051601    5, 11,  15,  15,   11,    5;
%e A051601    6, 16,  26,  30,   26,   16,   6;
%e A051601    7, 22,  42,  56,   56,   42,   22,    7;
%e A051601    8, 29,  64,  98,  112,   98,   64,   29,   8;
%e A051601    9, 37,  93, 162,  210,  210,  162,   93,   37,   9;
%e A051601   10, 46, 130, 255,  372,  420,  372,  255,  130,  46,  10;
%e A051601   11, 56, 176, 385,  627,  792,  792,  627,  385, 176,  56, 11;
%e A051601   12, 67, 232, 561, 1012, 1419, 1584, 1419, 1012, 561, 232, 67, 12. ... (End)
%p A051601 seq(seq(binomial(n,k+1) + binomial(n, n-k+1), k=0..n), n=0..12); # _G. C. Greubel_, Nov 12 2019
%t A051601 T[n_, k_]:= T[n, k] = Binomial[n, k+1] + Binomial[n, n-k+1];
%t A051601 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _Roger L. Bagula_, Feb 17 2009; modified by _G. C. Greubel_, Nov 12 2019 *)
%o A051601 (Haskell)
%o A051601 a051601 n k = a051601_tabl !! n !! k
%o A051601 a051601_row n = a051601_tabl !! n
%o A051601 a051601_tabl = iterate
%o A051601                (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [0]
%o A051601 -- _Reinhard Zumkeller_, Nov 23 2012
%o A051601 (Magma) /* As triangle: */ [[Binomial(n,m+1)+Binomial(n,n-m+1): m in [0..n]]: n in [0..12]]; // _Bruno Berselli_, Aug 02 2013
%o A051601 (PARI) T(n,k) = binomial(n, k+1) + binomial(n, n-k+1);
%o A051601 for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Nov 12 2019
%o A051601 (Sage) [[binomial(n, k+1) + binomial(n, n-k+1) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 12 2019
%o A051601 (GAP) Flat(List([0..12], n-> List([0..n], k->  Binomial(n, k+1) + Binomial(n, n-k+1) ))); # _G. C. Greubel_, Nov 12 2019
%Y A051601 Row sums give A000918(n+1).
%Y A051601 Cf. A007318, A224791, A228196, A228576.
%Y A051601 Columns from 2 to 9, respectively: A000124; A000125, A055795, A027660, A055796, A055797, A055798, A055799 (except 1 for the last seven). [_Bruno Berselli_, Aug 02 2013]
%Y A051601 Cf. A001477, A162551 (central terms).
%K A051601 nonn,tabl,easy
%O A051601 0,4
%A A051601 _Asher Auel_