This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051607 #20 Dec 23 2022 07:40:56 %S A051607 1,10,130,2080,39520,869440,21736000,608608000,18866848000, %T A051607 641472832000,23734494784000,949379791360000,40823331028480000, %U A051607 1877873227310080000,92015788138193920000,4784820983186083840000,263165154075234611200000,15263578936363607449600000 %N A051607 a(n) = (3*n+7)!!!/7!!!. %C A051607 Related to A007559(n+1) ((3*n+1)!!! triple factorials). %C A051607 Row m=7 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0. %H A051607 G. C. Greubel, <a href="/A051607/b051607.txt">Table of n, a(n) for n = 0..378</a> %F A051607 a(n) = ((3*n+7)(!^3))/7(!^3). %F A051607 E.g.f.: 1/(1-3*x)^(10/3). %F A051607 Sum_{n>=0} 1/a(n) = 1 + 9*(3*e)^(1/3)*(Gamma(10/3) - Gamma(10/3, 1/3)). - _Amiram Eldar_, Dec 23 2022 %t A051607 With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(10/3), {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Aug 15 2018 *) %o A051607 (PARI) x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(10/3))) \\ _G. C. Greubel_, Aug 15 2018 %o A051607 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(10/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 15 2018 %Y A051607 Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051608, A051609 (rows m=0..9). %K A051607 easy,nonn %O A051607 0,2 %A A051607 _Wolfdieter Lang_