This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051617 #14 Sep 08 2022 08:44:59 %S A051617 1,9,117,1989,41769,1044225,30282525,999323325,36974963025, %T A051617 1515973484025,68218806781125,3342721532275125,177164241210581625, %U A051617 10098361749003152625,616000066689192310125,40040004334797500158125 %N A051617 a(n) = (4*n+5)(!^4)/5(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials). %C A051617 Row m=5 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0. %H A051617 G. C. Greubel, <a href="/A051617/b051617.txt">Table of n, a(n) for n = 0..363</a> %F A051617 a(n) = ((4*n+5)(!^4))/5(!^4). %F A051617 E.g.f.: 1/(1-4*x)^(9/4). %t A051617 s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 5!, 4}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008 *) %t A051617 With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(9/4), {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Aug 15 2018 *) %o A051617 (PARI) x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(9/4))) \\ _G. C. Greubel_, Aug 15 2018 %o A051617 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 15 2018 %Y A051617 Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1) (rows m=0..4). %K A051617 easy,nonn %O A051617 0,2 %A A051617 _Wolfdieter Lang_