This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051619 #14 Sep 08 2022 08:44:59 %S A051619 1,11,165,3135,72105,1946835,60351885,2112315975,82380323025, %T A051619 3542353890075,166490632833525,8491022274509775,467006225098037625, %U A051619 27553367280784219875,1735862138689405852125,116302763292190192092375 %N A051619 a(n) = (4*n+7)(!^4)/7(!^4), related to A034176(n+1) ((4*n+3)(!^4) quartic, or 4-factorials). %C A051619 Row m=7 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0. %H A051619 G. C. Greubel, <a href="/A051619/b051619.txt">Table of n, a(n) for n = 0..363</a> %F A051619 a(n) = ((4*n+7)(!^4))/7(!^4) = A034176(n+2)/7. %F A051619 E.g.f.: 1/(1-4*x)^(11/4). %t A051619 s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 4}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008 *) %t A051619 With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(11/4), {x, 0, nn}], x]*Range[0, nn]!] (* _G. C. Greubel_, Aug 15 2018 *) %o A051619 (PARI) x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(11/4))) \\ _G. C. Greubel_, Aug 15 2018 %o A051619 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(11/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 15 2018 %Y A051619 Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051622 (rows m=0..10). %K A051619 easy,nonn %O A051619 0,2 %A A051619 _Wolfdieter Lang_