This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051639 #19 Jul 26 2025 20:43:02 %S A051639 1,13,139,13927,1392781,1392781243,1392781243729,13927812437292187, %T A051639 139278124372921876561,13927812437292187656119683, %U A051639 1392781243729218765611968359049,1392781243729218765611968359049177147,1392781243729218765611968359049177147531441 %N A051639 Concatenation of 3^k, k = 0,..,n. %D A051639 A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000 %H A051639 Alois P. Heinz, <a href="/A051639/b051639.txt">Table of n, a(n) for n = 0..63</a> %e A051639 139 belongs to the sequence because it is the concatenation of 3^0, 3^1 and 3^2. %p A051639 From _R. J. Mathar_, Oct 10 2010: (Start) %p A051639 cat2 := proc(a,b) dgsb := max(1,ilog10(b)+1) ; a*10^dgsb+b ; end proc: %p A051639 catL := proc(L) local a; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc: %p A051639 A051639 := proc(n) catL([seq(3^k,k=0..n)]) ; end proc: seq(A051639(n),n=0..20) ; (End) %p A051639 # second Maple program: %p A051639 a:= proc(n) a(n):= `if`(n<0, 0, parse(cat(a(n-1), 3^n))) end: %p A051639 seq(a(n), n=0..12); # _Alois P. Heinz_, May 30 2021 %t A051639 With[{p3=3^Range[0,15]},Table[FromDigits[Flatten[IntegerDigits/@ Take[ p3,n]]],{n,15}]] (* _Harvey P. Dale_, Sep 13 2011 *) %Y A051639 Cf. A000244. - _R. J. Mathar_, Oct 10 2010 %Y A051639 Cf. A045507. %K A051639 base,nonn %O A051639 0,2 %A A051639 _Felice Russo_, Nov 15 1999 %E A051639 Terms n>=7 corrected by _R. J. Mathar_, Oct 10 2010