This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
q, r primes.
%I A051663 #26 May 12 2024 10:03:24 %S A051663 2,11,197,1223,1487,4007,4547,7823,9833,9839,10259,11483,11807,11909, %T A051663 13259,13967,14207,15629,15803,16139,16889,18287,19583,22367,23039, %U A051663 23879,24359,25349,29339,30707,32027,33343,34883,36929,38747 %N A051663 Primes p such that there is no Carmichael number pqr, p<q<r q, r primes. %D A051663 Gilberto Garcia-Pulgarin, Numeros de Carmichael producto de tes primos, preprint, 1999. %H A051663 Charles R Greathouse IV, <a href="/A051663/b051663.txt">Table of n, a(n) for n = 1..544</a> (all terms < 10^6) %H A051663 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a> %e A051663 2 is a term since there is no Carmichael number of the form 2rq. %o A051663 (PARI) is(p) = { %o A051663 for( A=1, p-1, %o A051663 my(B=ceil((p^2+1)/A),q,r); %o A051663 while(1, %o A051663 r=(B*(p+A-1)-p)/(A*B-p*p); %o A051663 q=(A*r-A+1)/p; %o A051663 if(p>=q, break); %o A051663 if(denominator(q)==1 && denominator(r)==1 && r>q && (q*r)%(p-1)==1 && isprime(q) && isprime(r), return(0)); %o A051663 B++ %o A051663 ) %o A051663 ); %o A051663 1 %o A051663 }; \\ _Charles R Greathouse IV_, Feb 23 2013 %K A051663 nonn %O A051663 1,1 %A A051663 _Gilberto Garcia-Pulgarin_, Dec 11 1999 %E A051663 Edited by Jack Brennen, Jul 01 2008 %E A051663 Corrected by _Emmanuel Vantieghem_, Nov 26 2012