cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051672 Triangle of up-down sums of k-th powers: a(n,k)=sum(i^k,i=1..n)+sum((n-i)^k,i=1..n-1), n,k>0.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 19, 10, 1, 25, 44, 45, 18, 1, 36, 85, 136, 115, 34, 1, 49, 146, 325, 452, 309, 66, 1, 64, 231, 666, 1333, 1576, 859, 130, 1, 81, 344, 1225, 3254, 5725, 5684, 2445, 258, 1, 100, 489, 2080, 6951, 16626, 25405, 21016, 7075, 514, 1, 121
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Examples

			{1}; {4,1}; {9,6,1}; {16,19,10,1}; {25,44,45,18,1}; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := HarmonicNumber[n, -k]+Zeta[-k]-Zeta[-k, n]; Flatten[ Table[ a[n-k+1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Nov 29 2011 *)

Formula

a(n, 1)=n^2=A000290, a(n, 2)=1/3*n*(2*n^2+1)=A005900, a(n, 3)= (1/2) *n^2*(n^2+1)=A037270, a(n, 4)=1/15*n*(6*n^4+10*n^2-1), a(n, 5)=1/6*n^2*(2*n^4+5*n^2-1)