This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051674 #86 Dec 03 2024 22:17:01 %S A051674 4,27,3125,823543,285311670611,302875106592253,827240261886336764177, %T A051674 1978419655660313589123979,20880467999847912034355032910567, %U A051674 2567686153161211134561828214731016126483469,17069174130723235958610643029059314756044734431 %N A051674 a(n) = prime(n)^prime(n). %C A051674 Numbers k such that bigomega(k)^(bigomega(k)) = k, where bigomega = A001222. - _Lekraj Beedassy_, Aug 21 2004 %C A051674 Positive k such that k' = k, where k' is the arithmetic derivative of k. - _T. D. Noe_, Oct 12 2004 %C A051674 David Beckwith proposes (in the AMM reference): "Let n be a positive integer and let p be a prime number. Prove that (p^p) | n! implies that (p^(p + 1)) | n!". - _Jonathan Vos Post_, Feb 20 2006 %C A051674 Subsequence of A100716; A003415(m*a(n)) = A129283(m)*a(n), especially A003415(a(n)) = a(n). - _Reinhard Zumkeller_, Apr 07 2007 %C A051674 A168036(a(n)) = 0. - _Reinhard Zumkeller_, May 22 2015 %D A051674 J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004. %H A051674 T. D. Noe, <a href="/A051674/b051674.txt">Table of n, a(n) for n = 1..40</a> %H A051674 David Beckwith, <a href="http://www.jstor.org/stable/30037505">Problem 11158</a>, American Mathematical Monthly, Vol. 112, No. 5 (May 2005), p. 468. %H A051674 Jurij Kovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.html">The Arithmetic Derivative and Antiderivative</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.3.8. %F A051674 a(n) = A000312(A000040(n)). - _Altug Alkan_, Sep 01 2016 %F A051674 Sum_{n>=1} 1/a(n) = A094289. - _Amiram Eldar_, Oct 13 2020 %e A051674 a(1) = 2^2 = 4. %e A051674 a(2) = 3^3 = 27. %e A051674 a(3) = 5^5 = 3125. %p A051674 A051674:=n->ithprime(n)^ithprime(n): seq(A051674(n), n=1..10); # _Wesley Ivan Hurt_, Jun 25 2016 %t A051674 Array[Prime[ # ]^Prime[ # ] &, 12] (* _Vladimir Joseph Stephan Orlovsky_, May 01 2008 *) %t A051674 #^#&/@Prime[Range[10]] (* _Harvey P. Dale_, May 17 2024 *) %o A051674 (Haskell) %o A051674 a051674_list = map (\p -> p ^ p) a000040_list %o A051674 -- _Reinhard Zumkeller_, Jan 21 2012 %o A051674 (PARI) a(n)=n=prime(n);n^n \\ _Charles R Greathouse IV_, Mar 20 2013 %o A051674 (Magma) [p^p: p in PrimesUpTo(30)]; // _Vincenzo Librandi_, Mar 27 2014 %o A051674 (Python) from gmpy2 import mpz %o A051674 [mpz(prime(n))**mpz(prime(n)) for n in range(1,100)] # _Chai Wah Wu_, Jul 28 2014 %Y A051674 Cf. A000040, A000312, A003415 (arithmetic derivative of n), A129150, A129151, A129152, A048102, A072873 (multiplicative closure), A104126. %Y A051674 Subsequence of A100717; A203908(a(n)) = 0. %Y A051674 Subsequence of A097764. %Y A051674 Cf. A168036, A094289 (decimal expansion of Sum(1/p^p)). %K A051674 nonn,easy %O A051674 1,1 %A A051674 _Asher Auel_