This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051731 #144 Nov 13 2024 14:56:26 %S A051731 1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,0, %T A051731 0,1,1,0,1,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1, %U A051731 1,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1 %N A051731 Triangle read by rows: T(n, k) = 1 if k divides n, T(n, k) = 0 otherwise, for 1 <= k <= n. %C A051731 T(n, k) is the number of partitions of n into k equal parts. - _Omar E. Pol_, Apr 21 2018 %C A051731 This triangle is the lower triangular array L in the LU decomposition of the square array A003989. - _Peter Bala_, Oct 15 2023 %H A051731 Charles R Greathouse IV, <a href="/A051731/b051731.txt">Rows n = 1..100, flattened</a> %H A051731 Marc Chamberland, <a href="https://doi.org/10.1016/j.laa.2011.08.030">Factored matrices can generate combinatorial identities</a>, Linear Algebra and its Applications, Volume 438, Issue 4, 2013, pp. 1667-1677. %H A051731 Mats Granvik, <a href="/A051731/a051731_1.gif">Illustration</a>. %H A051731 Warren P. Johnson, <a href="https://doi.org/10.1080/0025570X.2003.11953215">An LDU Factorization in Elementary Number Theory</a>, Mathematics Magazine, Vol. 76, No. 5 (Dec., 2003), pp. 392-394. %H A051731 Jeffrey Ventrella, <a href="http://www.divisorplot.com/">Divisor Plot</a>. %F A051731 {T(n, k)*k, k=1..n} setminus {0} = divisors(n). %F A051731 Sum_{k=1..n} T(n, k)*k^i = sigma[i](n), where sigma[i](n) is the sum of the i-th power of the positive divisors of n. %F A051731 Sum_{k=1..n} T(n, k) = A000005(n). %F A051731 Sum_{k=1..n} T(n, k)*k = A000203(n). %F A051731 T(n, k) = T(n-k, k) for k <= n/2, T(n, k) = 0 for n/2 < k <= n-1, T(n, n) = 1. %F A051731 Rows given by A074854 converted to binary. Example: A074854(4) = 13 = 1101_2; row 4 = 1, 1, 0, 1. - _Philippe Deléham_, Oct 04 2003 %F A051731 From _Paul Barry_, Dec 05 2004: (Start) %F A051731 Binomial transform (product by binomial matrix) is A101508. %F A051731 Columns have g.f.: x^k/(1-x^(k+1)) (k >= 0). (End) %F A051731 Matrix inverse of triangle A054525, where A054525(n, k) = MoebiusMu(n/k) if k|n, 0 otherwise. - _Paul D. Hanna_, Jan 09 2006 %F A051731 From _Gary W. Adamson_, Apr 15 2007, May 10 2007: (Start) %F A051731 Equals A129372 * A115361 as infinite lower triangular matrices. %F A051731 A054525 is the inverse of this triangle (as lower triangular matrix). %F A051731 This triangle * [1, 2, 3, ...] = sigma(n) (A000203). %F A051731 This triangle * [1/1, 1/2, 1/3, ...] = sigma(n)/n. (End) %F A051731 From _Reinhard Zumkeller_, Nov 01 2009: (Start) %F A051731 T(n, k) = 0^(n mod k). %F A051731 T(n, k) = A000007(A048158(n, k)). (End) %F A051731 From _Mats Granvik_, Jan 26 2010, Feb 10 2010, Feb 16 2010: (Start) %F A051731 T(n, k) = A172119(n) mod 2. %F A051731 T(n, k) = A175105(n) mod 2. %F A051731 T(n, k) = Sum_{i=1..k-1} (T(n-i, k-1) - T(n-i, k)) for k > 1 and T(n, 1) = 1. %F A051731 (Jeffrey O. Shallit kindly provided a clarification along with a proof of this formula.) (End) %F A051731 A049820(n) = number of zeros in n-th row. - _Reinhard Zumkeller_, Mar 09 2010 %F A051731 The determinant of this matrix where T(n, n) has been swapped with T(1,k) is equal to the n-th term of the Mobius function. - _Mats Granvik_, Jul 21 2012 %F A051731 T(n, k) = Sum_{y=1..n} Sum_{x=1..n} [GCD((x/y)*(k/n), n) = k]. - _Mats Granvik_, Dec 17 2023 %e A051731 The triangle T(n, k) begins: %e A051731 n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... %e A051731 1: 1 %e A051731 2: 1 1 %e A051731 3: 1 0 1 %e A051731 4: 1 1 0 1 %e A051731 5: 1 0 0 0 1 %e A051731 6: 1 1 1 0 0 1 %e A051731 7: 1 0 0 0 0 0 1 %e A051731 8: 1 1 0 1 0 0 0 1 %e A051731 9: 1 0 1 0 0 0 0 0 1 %e A051731 10: 1 1 0 0 1 0 0 0 0 1 %e A051731 11: 1 0 0 0 0 0 0 0 0 0 1 %e A051731 12: 1 1 1 1 0 1 0 0 0 0 0 1 %e A051731 13: 1 0 0 0 0 0 0 0 0 0 0 0 1 %e A051731 14: 1 1 0 0 0 0 1 0 0 0 0 0 0 1 %e A051731 15: 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 %e A051731 ... Reformatted and extended. - _Wolfdieter Lang_, Nov 12 2014 %p A051731 A051731 := proc(n, k) if n mod k = 0 then 1 else 0 end if end proc: %p A051731 # _R. J. Mathar_, Jul 14 2012 %t A051731 Flatten[Table[If[Mod[n, k] == 0, 1, 0], {n, 20}, {k, n}]] %o A051731 (PARI) %o A051731 for(n=1,17,for(k=1,n,print1(!(n%k)", "))) \\ _Charles R Greathouse IV_, Mar 14 2012 %o A051731 (Haskell) %o A051731 a051731 n k = 0 ^ mod n k %o A051731 a051731_row n = a051731_tabl !! (n-1) %o A051731 a051731_tabl = map (map a000007) a048158_tabl %o A051731 -- _Reinhard Zumkeller_, Aug 13 2013 %o A051731 (Sage) %o A051731 A051731_row = lambda n: [int(k.divides(n)) for k in (1..n)] %o A051731 for n in (1..17): print(A051731_row(n)) # _Peter Luschny_, Jan 05 2018 %o A051731 (Magma) [0^(n mod k): k in [1..n], n in [1..17]]; // _G. C. Greubel_, Jun 22 2024 %o A051731 (Python) %o A051731 from math import isqrt, comb %o A051731 def A051731(n): return int(not (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))%(n-comb(a,2))) # _Chai Wah Wu_, Nov 13 2024 %Y A051731 Cf. A000007, A000203, A002260, A003989, A048158, A049820, A054525. %Y A051731 Cf. A074854, A101508, A115361, A129372, A172119, A175105. %Y A051731 Cf. A000005 (row sums), A032741(n+2) (diagonal sums). %Y A051731 Cf. A243987 (partial sums per row). %Y A051731 Cf. A134546 (A004736 * T, matrix multiplication). %Y A051731 Variants: A113704, A077049, A077051. %K A051731 easy,nice,nonn,tabl %O A051731 1,1 %A A051731 Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de) %E A051731 Edited by _Peter Luschny_, Oct 18 2023