This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051737 #34 Jul 02 2025 16:01:58 %S A051737 1,8,41,227,1234,6743,36787,200798,1095851,5980913,32641916,178150221, %T A051737 972290957,5306478436,28961194501,158061670175,862654025422, %U A051737 4708111537971,25695485730239,140238391149386,765379824048327,4177217595760125,22798023012345528,124424893212114297 %N A051737 Number of 4 X n (0,1)-matrices with no consecutive 1's in any row or column. %H A051737 Colin Barker, <a href="/A051737/b051737.txt">Table of n, a(n) for n = 0..1000</a> %H A051737 N. J. Calkin and H. S. Wilf, <a href="http://hdl.handle.net/1853/31277">The number of independent sets in a grid graph</a>, preprint. %H A051737 N. J. Calkin and H. S. Wilf, <a href="http://dx.doi.org/10.1137/S089548019528993X">The number of independent sets in a grid graph</a>, SIAM J. Discrete Math, 11 (1998) 54-60. %H A051737 Reinhardt Euler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Euler/euler1.html">The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6. %H A051737 Y. Kong, <a href="http://dx.doi.org/10.1063/1.479242">General recurrence theory of ligand binding on a three-dimensional lattice</a>, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799 (set omega = 1 in Eq. (48)). %H A051737 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,9,-5,-4,1). %F A051737 From Yong Kong (ykong(AT)curagen.com), Dec 24 2000: (Start) %F A051737 a(n) = 4*a(n - 1) + 9*a(n - 2) - 5*a(n - 3) - 4*a(n - 4) + a(n - 5); %F A051737 G.f.: (1 + 4*x - 4*x^3 + x^4)/(1 - 4*x - 9*x^2 + 5*x^3 + 4*x^4 - x^5). (End) %F A051737 a(n) = 2*a(n - 1) + 18*a(n - 2) + 9*a(n - 3) - 23*a(n - 4) - 2*a(n - 5) + 6*a(n - 6) - a(n - 7). %t A051737 LinearRecurrence[{4, 9, -5, -4, 1}, {1, 8, 41, 227, 1234}, 24] (* _Jean-François Alcover_, Nov 05 2017 *) %o A051737 (PARI) Vec((1+4*x-4*x^3+x^4)/(1-4*x-9*x^2+5*x^3+4*x^4-x^5) + O(x^50)) \\ _Michel Marcus_, Sep 17 2014 %Y A051737 Row 4 of A089934. %Y A051737 Cf. A051736. %K A051737 easy,nonn %O A051737 0,2 %A A051737 _Stephen G Penrice_, Dec 06 1999 %E A051737 More terms from _James Sellers_, Dec 08 1999 %E A051737 More terms from _Michel Marcus_, Sep 17 2014