This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051747 #24 Sep 08 2022 08:44:59 %S A051747 2,10,31,76,161,308,546,912,1452,2222,3289,4732,6643,9128,12308,16320, %T A051747 21318,27474,34979,44044,54901,67804,83030,100880,121680,145782, %U A051747 173565,205436,241831,283216,330088,382976,442442,509082,583527,666444,758537 %N A051747 a(n) = n*(n+1)*(n+2)*(n^2+7*n+32)/120. %H A051747 Vincenzo Librandi, <a href="/A051747/b051747.txt">Table of n, a(n) for n = 1..1000</a> %H A051747 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A051747 a(n) = binomial(n+4, n-1)+binomial(n+2, n-1). %F A051747 Convolution of triangular numbers with triangular numbers + 1, i.e. [1, 3, 6, 10, 15, 21, ...] with [2, 4, 7, 11, 16, 22, ...]. %F A051747 a(1)=2, a(2)=10, a(3)=31, a(4)=76, a(5)=161, a(6)=308, a(n)=6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - _Harvey P. Dale_, Oct 03 2012 %F A051747 G.f.: x*(x^2-2*x+2) / (x-1)^6. - _Colin Barker_, Mar 18 2015 %t A051747 Table[(1/120)*n*(n + 1)*(n + 2)*(n^2 + 7*n + 32), {n, 60}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 14 2011 *) %t A051747 LinearRecurrence[{6,-15,20,-15,6,-1},{2,10,31,76,161,308},60] (* _Harvey P. Dale_, Oct 03 2012 *) %o A051747 (PARI) conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w; t(n)=n*(n+1)/2; u=vector(10,i,t(i)); v=vector(10,i,t(i)+1); conv(u,v) %o A051747 (Magma) [n*(n+1)*(n+2)*(n^2+7*n+32)/120: n in [1..40]]; // _Vincenzo Librandi_, Jun 15 2011 %o A051747 (PARI) Vec(x*(x^2-2*x+2)/(x-1)^6 + O(x^100)) \\ _Colin Barker_, Mar 18 2015 %Y A051747 Cf. A000217, A000389, A005583. %K A051747 easy,nonn %O A051747 1,1 %A A051747 Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999