This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051798 #34 Sep 08 2022 08:44:59 %S A051798 1,13,55,155,350,686,1218,2010,3135,4675,6721,9373,12740,16940,22100, %T A051798 28356,35853,44745,55195,67375,81466,97658,116150,137150,160875, %U A051798 187551,217413,250705,287680,328600,373736,423368,477785,537285 %N A051798 a(n) = (n+1)*(n+2)*(n+3)*(9n+4)/24. %C A051798 Partial sums of A007586. %C A051798 Convolution of A000027 with A051682 (excluding 0). - _Bruno Berselli_, Dec 07 2012 %D A051798 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %D A051798 Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94. %D A051798 Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8. %H A051798 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %H A051798 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A051798 a(n) = C(n+3, 3)*(9*n+4)/4. %F A051798 G.f.: (1+8*x)/(1-x)^5. %F A051798 a(0)=1, a(1)=13, a(2)=55, a(3)=155, a(4)=350, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - _Harvey P. Dale_, Aug 19 2012 %F A051798 a(n) = A080852(9,n). - _R. J. Mathar_, Jul 28 2016 %t A051798 Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,13,55,155,350},40] (* _Harvey P. Dale_, Aug 19 2012 *) %o A051798 (Magma) /* A000027 convolved with A051682 (excluding 0): */ A051682:=func<n | n*(9*n-7)/2>; [&+[(n-i+1)*A051682(i): i in [1..n]]: n in [1..35]]; // _Bruno Berselli_, Dec 07 2012 %o A051798 (PARI) a(n)=(n+1)*(n+2)*(n+3)*(9*n+4)/24 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A051798 Cf. A007586, A051682. %Y A051798 Cf. A093644 ((9, 1) Pascal, column m=4). %Y A051798 Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers. %K A051798 nonn,easy %O A051798 0,2 %A A051798 _Barry E. Williams_, Dec 11 1999