This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051799 #23 Feb 11 2022 04:48:57 %S A051799 1,14,60,170,385,756,1344,2220,3465,5170,7436,10374,14105,18760,24480, %T A051799 31416,39729,49590,61180,74690,90321,108284,128800,152100,178425, %U A051799 208026,241164,278110,319145,364560,414656,469744,530145,596190 %N A051799 Partial sums of A007587. %C A051799 4-dimensional pyramidal number, composed of consecutive 3-dimensional slices; each of which is a 3-dimensional 12-gonal (or dodecagonal) pyramidal number; which in turn is composed of consecutive 2-dimensional slices 12-gonal numbers. - _Jonathan Vos Post_, Mar 17 2006 %C A051799 Convolution of A000027 with A051624 (excluding 0). - _Bruno Berselli_, Dec 07 2012 %D A051799 Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %D A051799 Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8. %D A051799 Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94. %H A051799 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %H A051799 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>. %F A051799 a(n) = C(n+3, 3)*(5*n+2)/2 = (n+1)*(n+2)*(n+3)*(5*n+2)/12. %F A051799 G.f.: (1+9*x)/(1-x)^5. %F A051799 From _Amiram Eldar_, Feb 11 2022: (Start) %F A051799 Sum_{n>=0} 1/a(n) = (125*log(5) + 10*sqrt(5*(5-2*sqrt(5)))*Pi - 50*sqrt(5)*log(phi) - 84)/104, where phi is the golden ratio (A001622). %F A051799 Sum_{n>=0} (-1)^n/a(n) = (50*sqrt(5)*log(phi) + 5*sqrt(50-10*sqrt(5))*Pi - 256*log(2) + 90)/52. (End) %t A051799 Accumulate[Table[n(n+1)(10n-7)/6,{n,0,50}]] (* _Harvey P. Dale_, Nov 13 2013 *) %o A051799 (Magma) /* A000027 convolved with A051624 (excluding 0): */ A051624:=func<n | n*(5*n-4)>; [&+[(n-i+1)*A051624(i): i in [1..n]]: n in [1..35]]; // _Bruno Berselli_, Dec 07 2012 %Y A051799 Cf. A007587, A001622, A051624. %Y A051799 Cf. A093645 ((10, 1) Pascal, column m=4). %Y A051799 Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers. %K A051799 nonn,easy %O A051799 0,2 %A A051799 _Barry E. Williams_, Dec 11 1999