This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051835 #10 Nov 21 2021 19:05:11 %S A051835 2,3,5,11,131,191,12821,14741,19391,19991,36563,38183,93239,96269, %T A051835 1028201,1074701,1150511,1178711,1243421,1281821,1317131,1333331, %U A051835 1407041,1456541,1508051,1532351,1557551,1598951,1600061,1609061 %N A051835 Palindromic Sophie Germain primes. %C A051835 p and 2p+1 are primes (cf. A005384) and p is a palindrome. %H A051835 Robert Israel, <a href="/A051835/b051835.txt">Table of n, a(n) for n = 1..10000</a> %H A051835 H. Dubner, <a href="http://ksc9.th.com/warut/dubner.html">Palindromic Sophie Germain primes</a>, Journal of Recreational Mathematics, Vol. 26, No. 1, pp. 38-41, 1994. %p A051835 makepali:= proc(n, d) local L; # case with d odd %p A051835 L:= convert(n, base, 10); %p A051835 10^((d-1)/2)*n + add(L[i]*10^((d+1)/2-i), i=2..(d+1)/2) %p A051835 end proc: %p A051835 N:= 100: # for a(1)..a(N) %p A051835 R:= 2,3,5,11: count:= 4: %p A051835 for d from 3 by 2 while count < N do %p A051835 for i in [1,3,7,9] while count < N do %p A051835 for x from 0 to 10^((d-1)/2)-1 while count < N do %p A051835 y:= makepali(i*10^((d-1)/2)+x,d); %p A051835 if isprime(y) and isprime(2*y+1) then %p A051835 R:= R, y; %p A051835 count:= count+1; %p A051835 fi %p A051835 od od od: %p A051835 R; # _Robert Israel_, Nov 22 2020 %t A051835 Select[Prime[Range[125000]],PrimeQ[2#+1]&&PalindromeQ[#]&] (* _Harvey P. Dale_, Nov 21 2021 *) %Y A051835 Cf. A002385, A005384. %K A051835 base,nonn %O A051835 1,1 %A A051835 _Warut Roonguthai_ Dec 11 1999