This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051841 #44 May 10 2021 11:32:08 %S A051841 1,0,1,1,3,4,9,14,28,48,93,165,315,576,1091,2032,3855,7252,13797, %T A051841 26163,49929,95232,182361,349350,671088,1290240,2485504,4792905, %U A051841 9256395,17894588,34636833,67106816,130150493,252641280,490853403,954429840,1857283155,3616800768,7048151355,13743869130,26817356775 %N A051841 Number of binary Lyndon words with an even number of 1's. %C A051841 Also number of trace 0 irreducible polynomials over GF(2). %C A051841 Also number of trace 0 Lyndon words over GF(2). %D A051841 May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - _N. J. A. Sloane_, Mar 17 2019 %H A051841 T. D. Noe, <a href="/A051841/b051841.txt">Table of n, a(n) for n = 1..300</a> %H A051841 F. Ruskey, <a href="http://combos.org/TSlyndon">Number of q-ary Lyndon words with given trace mod q</a> %H A051841 F. Ruskey, <a href="http://combos.org/TlyndonFk">Number of Lyndon words over GF(q) with given trace</a> %H A051841 <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a> %F A051841 a(n) = 1/(2*n)*Sum_{d|n} gcd(d,2)*mu(d)*2^(n/d). %F A051841 a(n) ~ 2^(n-1) / n. - _Vaclav Kotesovec_, May 31 2019 %F A051841 From _Richard L. Ollerton_, May 10 2021: (Start) %F A051841 a(n) = 1/(2*n)*Sum_{k=1..n} gcd(gcd(n,k),2)*mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)). %F A051841 a(n) = (1/n)*Sum_{k=1..n} gcd(n/gcd(n,k),2)*mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End) %e A051841 a(5) = 3 = |{ 00011, 00101, 01111 }|. %t A051841 a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n); %t A051841 Table[a[n], {n, 1, 32}] %t A051841 (* _Jean-François Alcover_, May 14 2012, from formula *) %o A051841 (PARI) %o A051841 L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) ); %o A051841 a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n; %o A051841 vector(33,n,a(n)) %o A051841 /* _Joerg Arndt_, Jun 28 2012 */ %o A051841 (Haskell) %o A051841 a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v) %o A051841 ds $ reverse ds) `div` (2 * n) where ds = a027750_row n %o A051841 -- _Reinhard Zumkeller_, Mar 17 2013 %Y A051841 Same as A001037 - A000048. Same as A042980 + A042979. %Y A051841 Cf. A027750, A008683. %Y A051841 Cf. A000010. %K A051841 nonn,easy,nice %O A051841 1,5 %A A051841 _Frank Ruskey_, Dec 13 1999