cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051841 Number of binary Lyndon words with an even number of 1's.

This page as a plain text file.
%I A051841 #44 May 10 2021 11:32:08
%S A051841 1,0,1,1,3,4,9,14,28,48,93,165,315,576,1091,2032,3855,7252,13797,
%T A051841 26163,49929,95232,182361,349350,671088,1290240,2485504,4792905,
%U A051841 9256395,17894588,34636833,67106816,130150493,252641280,490853403,954429840,1857283155,3616800768,7048151355,13743869130,26817356775
%N A051841 Number of binary Lyndon words with an even number of 1's.
%C A051841 Also number of trace 0 irreducible polynomials over GF(2).
%C A051841 Also number of trace 0 Lyndon words over GF(2).
%D A051841 May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - _N. J. A. Sloane_, Mar 17 2019
%H A051841 T. D. Noe, <a href="/A051841/b051841.txt">Table of n, a(n) for n = 1..300</a>
%H A051841 F. Ruskey, <a href="http://combos.org/TSlyndon">Number of q-ary Lyndon words with given trace mod q</a>
%H A051841 F. Ruskey, <a href="http://combos.org/TlyndonFk">Number of Lyndon words over GF(q) with given trace</a>
%H A051841 <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>
%F A051841 a(n) = 1/(2*n)*Sum_{d|n} gcd(d,2)*mu(d)*2^(n/d).
%F A051841 a(n) ~ 2^(n-1) / n. - _Vaclav Kotesovec_, May 31 2019
%F A051841 From _Richard L. Ollerton_, May 10 2021: (Start)
%F A051841 a(n) = 1/(2*n)*Sum_{k=1..n} gcd(gcd(n,k),2)*mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
%F A051841 a(n) = (1/n)*Sum_{k=1..n} gcd(n/gcd(n,k),2)*mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
%e A051841 a(5) = 3 = |{ 00011, 00101, 01111 }|.
%t A051841 a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n);
%t A051841 Table[a[n], {n, 1, 32}]
%t A051841 (* _Jean-François Alcover_, May 14 2012, from formula *)
%o A051841 (PARI)
%o A051841 L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
%o A051841 a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n;
%o A051841 vector(33,n,a(n))
%o A051841 /* _Joerg Arndt_, Jun 28 2012 */
%o A051841 (Haskell)
%o A051841 a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v)
%o A051841              ds $ reverse ds) `div` (2 * n) where ds = a027750_row n
%o A051841 -- _Reinhard Zumkeller_, Mar 17 2013
%Y A051841 Same as A001037 - A000048. Same as A042980 + A042979.
%Y A051841 Cf. A027750, A008683.
%Y A051841 Cf. A000010.
%K A051841 nonn,easy,nice
%O A051841 1,5
%A A051841 _Frank Ruskey_, Dec 13 1999