This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051844 #23 Jul 05 2022 03:27:30 %S A051844 2,6,30,90,1530,16830,218790,9407970,2417848290,137817352530, %T A051844 28252557268650,19296496614487950,4650455684091595950, %U A051844 12700394473254148539450,41619192688853844763777650,13775952780010622616810402150,902834617343556174437903325704550 %N A051844 a(n) = LCM_{k=0..n} (2^k + 1). %F A051844 a(n) = lcm(2, 3, 5, ..., 2^n + 1). %F A051844 Product_{k=1..n} cyclotomic(2*k-2, 2). - _Vladeta Jovovic_, Apr 05 2004 %e A051844 a(3) = lcm(2, 3, 5) = 30. %t A051844 Module[{nn=20,c},c=Table[2^n+1,{n,0,nn}];Table[LCM@@Take[c,n],{n,nn}]] (* _Harvey P. Dale_, Aug 04 2017 *) %o A051844 (PARI) a(n) = {ret = 1; for (k=0, n, ret = lcm(ret, 2^k+1)); return(ret);} \\ _Michel Marcus_, May 24 2013 %o A051844 (Python) %o A051844 from math import lcm %o A051844 from itertools import accumulate %o A051844 def aupton(nn): return list(accumulate((2**k+1 for k in range(nn+1)), lcm)) %o A051844 print(aupton(16)) # _Michael S. Branicky_, Jul 04 2022 %Y A051844 Cf. A034268. %Y A051844 Cf. A019320. %K A051844 nonn %O A051844 0,1 %A A051844 _Jeffrey Shallit_, Apr 20 2000 %E A051844 More terms from _Harvey P. Dale_, Aug 04 2017