A051860 Distinct prime numbers in order of their appearance in A051686.
2, 3, 7, 5, 19, 13, 37, 11, 31, 29, 61, 17, 23, 103, 83, 41, 47, 43, 107, 53, 97, 59, 67, 79, 73, 71, 109, 167, 151, 197, 127, 163, 89, 137, 157, 139, 113, 233, 181, 101, 229, 193, 179, 211, 131, 149, 373, 251, 271, 307, 173, 409, 199, 283, 227, 349, 263, 443, 313
Offset: 1
Keywords
Examples
37 appears first in A051686 at the 148th position and it is the 7th new prime number which arises, sooner than smaller primes like 11, 31, 29, 17, 23, so a(7) = 37.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
s[n_] := Module[{p = 2}, While[! PrimeQ[2*n*p + 1], p = NextPrime[p]]; p]; seq[len_] := Module[{t = {}, n = 1, c = 0, p}, While[c < len, p = s[n]; If[FreeQ[t, p], c++; AppendTo[t, p]]; n++]; t]; seq[60] (* Amiram Eldar, Feb 28 2025 *)
-
PARI
s(n) = {my(p = 2); while(!isprime(2*n*p + 1), p = nextprime(p+1)); p;} isin(list, k) = {for(i = 1, #list, if(list[i] == k, return(1))); 0}; list(len) = {my(t = List(), n = 1, c = 0, p); while(c < len, p = s(n); if(!isin(t, p), c++; listput(t, p)); n++); Vec(t);} \\ Amiram Eldar, Feb 28 2025
Comments